A personal recollection of how we learned to stop worrying and love the Lambda

A personal recollection of how we learned to stop worrying and love the Lambda

There is a tendency when teaching science to oversimplify its history for the sake of getting on with the science. How it came to be isn’t necessary to learn it. But to do science requires a proper understanding of the process by which it came to be.

The story taught to cosmology students seems to have become: we didn’t believe in the cosmological constant (Λ), then in 1998 the Type Ia supernovae (SN) monitoring campaigns detected accelerated expansion, then all of a sudden we did believe in Λ. The actual history was, of course, rather more involved – to the point where this oversimplification verges on disingenuous. There were many observational indications of Λ that were essential in paving the way.

Modern cosmology starts in the early 20th century with the recognition that the universe should be expanding or contracting – a theoretical inevitability of General Relativity that Einstein initially tried to dodge by inventing the cosmological constant – and is expanding in fact, as observationally established by Hubble and Slipher and many others since. The Big Bang was largely considered settled truth after the discovery of the existence of the cosmic microwave background (CMB) in 1964.

The CMB held a puzzle, as it quickly was shown to be too smooth. The early universe was both isotropic and homogeneous. Too homogeneous. We couldn’t detect the density variations that could grow into galaxies and other immense structures. Though such density variations are now well measured as temperature fluctuations that are statistically well described by the acoustic power spectrum, the starting point was that these fluctuations were a disappointing no-show. We should have been able to see them much sooner, unless something really weird was going on…

That something weird was non-baryonic cold dark matter (CDM). For structure to grow, it needed the helping hand of the gravity of some unseen substance. Normal matter matter did not suffice. The most elegant cosmology, the Einstein-de Sitter universe, had a mass density Ωm= 1. But the measured abundances of the light elements were only consistent with the calculations of big bang nucleosynthesis if normal matter amounted to only 5% of Ωm = 1. This, plus the need to grow structure, led to the weird but seemingly unavoidable inference that the universe must be full of invisible dark matter. This dark matter needed to be some slow moving, massive particle that does not interact with light nor reside within the menagerie of particles present in the Standard Model of Particle Physics.

CDM and early universe Inflation were established in the 1980s. Inflation gave a mechanism that drove the mass density to exactly one (elegant!), and CDM gave us hope for enough mass to get to that value. Together, they gave us the Standard CDM (SCDM) paradigm with Ωm = 1.000 and H0 = 50 km/s/Mpc.

elrondwasthere
I was there when SCDM failed.

It is hard to overstate the ferver with which the SCDM paradigm was believed. Inflation required that the mass density be exactly one; Ωm < 1 was inconceivable. For an Einstein-de Sitter universe to be old enough to contain the oldest stars, the Hubble constant had to be the lower of the two (50 or 100) commonly discussed at that time. That meant that H0 > 50 was Right Out. We didn’t even discuss Λ. Λ was Unmentionable. Unclean.

SCDM was Known, Khaleesi.

scdm_rightout

Λ had attained unmentionable status in part because of its origin as Einstein’s greatest blunder, and in part through its association with the debunked Steady State model. But serious mention of it creeps back into the literature by 1990. The first time I personally heard Λ mentioned as a serious scientific possibility was by Yoshii at a conference in 1993. Yoshii based his argument on a classic cosmological test, N(m) – the number of galaxies as a function of how faint they appeared. The deeper you look, the more you see, in a way that depends on the intrinsic luminosity of galaxies, and how they fill space. Look deep enough, and you begin to trace the geometry of the cosmos.

At this time, one of the serious problems confronting the field was the faint blue galaxies problem. There were so many faint galaxies on the sky, it was incredibly difficult to explain them all. Yoshii made a simple argument. To get so many galaxies, we needed a big volume. The only way to do that in the context of the Robertson-Walker metric that describes the geometry of the universe is if we have a large cosmological constant, Λ. He was arguing for ΛCDM five years before the SN results.

gold_hat_portrayed_by_alfonso_bedoya
Lambda? We don’t need no stinking Lambda!

Yoshii was shouted down. NO! Galaxies evolve! We don’t need no stinking Λ! In retrospect, Yoshii & Peterson (1995) looks like a good detection of Λ. Perhaps Yoshii & Peterson also deserve a Nobel prize?

Indeed, there were many hints that Λ (or at least low Ωm) was needed, e.g., the baryon catastrophe in clusters, the power spectrum of IRAS galaxies, the early appearance of bound structures, the statistics of gravitational lensesand so on. Certainly by the mid-90s it was clear that we were not going to make it to Ωm = 1. Inflation was threatened – it requires Ωm = 1 – or at least a flat geometry: ΩmΛ = 1.

SCDM was in crisis.

A very influential 1995 paper by Ostriker & Steinhardt did a lot to launch ΛCDM. I was impressed by the breadth of data Ostriker & Steinhardt discussed, all of which demanded low Ωm. I thought the case for Λ was less compelling, as it hinged on the age problem in a way that might also have been solved, at that time, by simply having an open universe (low Ωm with no Λ). This would ruin Inflation, but I wasn’t bothered by that. I expect they were. Regardless, they definitely made that case for ΛCDM three years before the supernovae results. Their arguments were accepted by almost everyone who was paying attention, including myself. I heard Ostriker give a talk around this time during which he was asked “what cosmology are you assuming?” to which he replied “the right one.” Called the “concordance” cosmology by Ostriker & Steinhardt, ΛCDM had already achieved the status of most-favored cosmology by the mid-90s.

omhannotated
A simplified version of the diagram of Ostriker & Steinhardt (1995) illustrating just a few of the constraints they discussed. Direct measurements of the expansion rate, mass density, and ages of the oldest stars excluded SCDM, instead converging on a narrow window – what we now call ΛCDM.

Ostriker & Steinhardt neglected to mention an important prediction of Λ: not only should the universe expand, but that expansion rate should accelerate! In 1995, that sounded completely absurd. People had looked for such an effect, and claimed not to see it. So I wrote a brief note pointing out the predicted acceleration of the expansion rate. I meant it in a bad way: how crazy would it be if the expansion of the universe was accelerating?! This was an obvious and inevitable consequence of ΛCDM that was largely being swept under the rug at that time.

I mean[t], surely we could live with Ωm < 1 but no Λ. Can’t we all just get along? Not really, as it turned out. I remember Mike Turner pushing the SN people very hard in Aspen in 1997 to Admit Λ. He had an obvious bias: as an Inflationary cosmologist, he had spent the previous decade castigating observers for repeatedly finding Ωm < 1. That’s too little mass, you fools! Inflation demands Ωm = 1.000! Look harder!

By 1997, Turner had, like many cosmologists, finally wrapped his head around the fact that we weren’t going to find enough mass for Ωm = 1. This was a huge problem for Inflation. The only possible solution, albeit an ugly one, was if Λ made up the difference. So there he was at Aspen, pressuring the people who observed supernova to Admit Λ. One, in particular, was Richard Ellis, a great and accomplished astronomer who had led the charge in shouting down Yoshii. They didn’t yet have enough data to Admit Λ. Not.Yet.

By 1998, there were many more high redshift SNIa. Enough to see Λ. This time, after the long series of results only partially described above, we were intellectually prepared to accept it – unlike in 1993. Had the SN experiments been conducted five years earlier, and obtained exactly the same result, they would not have been awarded the Nobel prize. They would instead have been dismissed as a trick of astrophysics: the universe evolves, metallicity was lower at earlier times, that made SN then different from now, they evolve and so cannot be used as standard candles. This sounds silly now, as we’ve figured out how to calibrate for intrinsic variations in the luminosities of Type Ia SN, but that is absolutely how we would have reacted in 1993, and no amount of improvements in the method would have convinced us. This is exactly what we did with faint galaxy counts: galaxies evolve; you can’t hope to understand that well enough to constrain cosmology. Do you ever hear them cited as evidence for Λ?

Great as the supernovae experiments to measure the metric genuinely were, they were not a discovery so much as a confirmation of what cosmologists had already decided to believe. There was no singular discovery that changed the way we all thought. There was a steady drip, drip, drip of results pointing towards Λ all through the ’90s – the age problem in which the oldest stars appeared to be older than the universe in which they reside, the early appearance of massive clusters and galaxies, the power spectrum of galaxies from redshift surveys that preceded Sloan, the statistics of gravitational lenses, and the repeated measurement of 1/4 < Ωm < 1/3 in a large variety of independent ways – just to name a few. By the mid-90’s, SCDM was dead. We just refused to bury it until we could accept ΛCDM as a replacement. That was what the Type Ia SN results really provided: a fresh and dramatic reason to accept the accelerated expansion that we’d already come to terms with privately but had kept hidden in the closet.

Note that the acoustic power spectrum of temperature fluctuations in the cosmic microwave background (as opposed to the mere existence of the highly uniform CMB) plays no role in this history. That’s because temperature fluctuations hadn’t yet been measured beyond their rudimentary detection by COBE. COBE demonstrated that temperature fluctuations did indeed exist (finally!) as they must, but precious little beyond that. Eventually, after the settling of much dust, COBE was recognized as one of many reasons why Ωm ≠ 1, but it was neither the most clear nor most convincing reason at that time. Now, in the 21st century, the acoustic power spectrum provides a great way to constrain what all the parameters of ΛCDM have to be, but it was a bit player in its development. The water there was carried by traditional observational cosmology using general purpose optical telescopes in a great variety of different ways, combined with a deep astrophysical understanding of how stars, galaxies, quasars and the whole menagerie of objects found in the sky work. All the vast knowledge incorporated in textbooks like those by Harrison, by Peebles, and by Peacock – knowledge that often seems to be lacking in scientists trained in the post-WMAP era.

Despite being a late arrival, the CMB power spectrum measured in 2000 by Boomerang and 2003 by WMAP did one important new thing to corroborate the ΛCDM picture. The supernovae data didn’t detect accelerated expansion so much as exclude the deceleration we had nominally expected. The data were also roughly consistent with a coasting universe (neither accelerating nor decelerating); the case for acceleration only became clear when we assumed that the geometry of the universe was flat (ΩmΛ = 1). That didn’t have to work out, so it was a great success of the paradigm when the location of the first peak of the power spectrum appeared in exactly the right place for a flat FLRW geometry.

The consistency of these data have given ΛCDM an air of invincibility among cosmologists. But a modern reconstruction of the Ostriker & Steinhardt diagram leaves zero room remaining – hence the tension between H0 = 73 measured directly and H0 = 67 from multiparameter CMB fits.

omhannotated_cmb
Constraints from the acoustic power spectrum of the CMB overplotted on the direct measurements from the plot above. Initially in great consistency with those measurement, the best fit CMB values have steadily wandered away from the most-favored region of parameter space that established ΛCDM in the first place. This is most apparent in the tension with H0.

In cosmology, we are accustomed to having to find our way through apparently conflicting data. The difference between an expansion rate of 67 and 73 seems trivial given that the field was long riven – in living memory – by the dispute between 50 and 100. This gives rise to the expectation that the current difference is just a matter of some subtle systematic error somewhere. That may well be correct. But it is also conceivable that FLRW is inadequate to describe the universe, and we have been driven to the objectively bizarre parameters of ΛCDM because it happens to be the best approximation that can be obtained to what is really going on when we insist on approximating it with FLRW.

Though a logical possibility, that last sentence will likely drive many cosmologists to reach for their torches and pitchforks. Before killing the messenger, we should remember that we once endowed SCDM with the same absolute certainty we now attribute to ΛCDM. I was there, 3,000 internet years ago, when SCDM failed. There is nothing so sacred in ΛCDM that it can’t suffer the same fate, as has every single cosmology ever devised by humanity.

Today, we still lack definitive knowledge of either dark matter or dark energy. These add up to 95% of the mass-energy of the universe according to ΛCDM. These dark materials must exist.

It is Known, Khaleesi.

Advertisements

The next cosmic frontier: 21cm absorption at high redshift

The next cosmic frontier: 21cm absorption at high redshift

There are two basic approaches to cosmology: start at redshift zero and work outwards in space, or start at the beginning of time and work forward. The latter approach is generally favored by theorists, as much of the physics of the early universe follows a “clean” thermal progression, cooling adiabatically as it expands. The former approach is more typical of observers who start with what we know locally and work outwards in the great tradition of Hubble, Sandage, Tully, and the entire community of extragalactic observers that established the paradigm of the expanding universe and measured its scale. This work had established our current concordance cosmology, ΛCDM, by the mid-90s.*

Both approaches have taught us an enormous amount. Working forward in time, we understand the nucleosynthesis of the light elements in the first few minutes, followed after a few hundred thousand years by the epoch of recombination when the universe transitioned from an ionized plasma to a neutral gas, bequeathing us the cosmic microwave background (CMB) at the phenomenally high redshift of z=1090. Working outwards in redshift, large surveys like Sloan have provided a detailed map of the “local” cosmos, and narrower but much deeper surveys provide a good picture out to z = 1 (when the universe was half its current size, and roughly half its current age) and beyond, with the most distant objects now known above redshift 7, and maybe even at z > 11. JWST will provide a good view of the earliest (z ~ 10?) galaxies when it launches.

This is wonderful progress, but there is a gap from 10 < z < 1000. Not only is it hard to observe objects so distant that z > 10, but at some point they shouldn’t exist. It takes time to form stars and galaxies and the supermassive black holes that fuel quasars, especially when starting from the smooth initial condition seen in the CMB. So how do we probe redshifts z > 10?

It turns out that the universe provides a way. As photons from the CMB traverse the neutral intergalactic medium, they are subject to being absorbed by hydrogen atoms – particularly by the 21cm spin-flip transition. Long anticipated, this signal has recently been detected by the EDGES experiment. I find it amazing that the atomic physics of the early universe allows for this window of observation, and that clever scientists have figured out a way to detect this subtle signal.

So what is going on? First, a mental picture. In the image below, an observer at the left looks out to progressively higher redshift towards the right. The history of the universe unfolds from right to left.

cosmicdarkagesillustration
An observer’s view of the history of the universe. Nearby, at low redshift, we see mostly empty space sprinkled with galaxies. At some high redshift (z ~ 20?), the first stars formed, flooding the previously dark universe with UV photons that reionize the gas of the intergalactic medium. The backdrop of the CMB provides the ultimate limit to electromagnetic observations as it marks the boundary (at z = 1090) between a mostly transparent and completely opaque universe.

Pritchard & Loeb give a thorough and lucid account of the expected sequence of events. As the early universe expands, it cools. Initially, the thermal photon bath that we now observe as the CMB has enough energy to keep atoms ionized. The mean free path that a photon can travel before interacting with a charged particle in this early plasma is very short: the early universe is opaque like the interior of a thick cloud. At z = 1090, the temperature drops to the point that photons can no longer break protons and electrons apart. This epoch of recombination marks the transition from an opaque plasma to a transparent universe of neutral hydrogen and helium gas. The path length of photons becomes very long; those that we see as the CMB have traversed the length of the cosmos mostly unperturbed.

Immediately after recombination follows the dark ages. Sources of light have yet to appear. There is just neutral gas expanding into the future. This gas is mostly but not completely transparent. As CMB photons propagate through it, they are subject to absorption by the spin-flip transition of hydrogen, a subtle but, in principle, detectable effect: one should see redshifted absorption across the dark ages.

After some time – perhaps a few hundred million years? – the gas has had enough time to clump up enough to start to form the first structures. This first population of stars ends the dark ages and ushers in cosmic dawn. The photons they release into the vast intergalactic medium (IGM) of neutral gas interacts with it and heats it up, ultimately reionizing the entire universe. After this time the IGM is again a plasma, but one so thin (thanks to the expansion of the universe) that it remains transparent. Galaxies assemble and begin the long evolution characterized by the billions of years lived by the stars the contain.

This progression leads to the expectation of 21cm absorption twice: once during the dark ages, and again at cosmic dawn. There are three temperatures we need to keep track of to see how this happens: the radiation temperature Tγ, the kinetic temperature of the gas, Tk, and the spin temperature, TS. The radiation temperature is that of the CMB, and scales as (1+z). The gas temperature is what you normally think of as a temperature, and scales approximately as (1+z)2. The spin temperature describes the occupation of the quantum levels involved in the 21cm hyperfine transition. If that makes no sense to you, don’t worry: all that matters is that absorption can occur when the spin temperature is less than the radiation temperature. In general, it is bounded by Tk < TS < Tγ.

The radiation temperature and gas temperature both cool as the universe expands. Initially, the gas remains coupled to the radiation, and these temperatures remain identical until decoupling around z ~ 200. After this, the gas cools faster than the radiation. The radiation temperature is extraordinarily well measured by CMB observations, and is simply Tγ = (2.725 K)(1+z). The gas temperature is more complicated, requiring the numerical solution of the Saha equation for a hydrogen-helium gas. Clever people have written codes to do this, like the widely-used RECFAST. In this way, one can build a table of how both temperatures depend on redshift in any cosmology one cares to specify.

This may sound complicated if it is the first time you’ve encountered it, but the physics is wonderfully simple. It’s just the thermal physics of the expanding universe, and the atomic physics of a simple gas composed of hydrogen and helium in known amounts. Different cosmologies specify different expansion histories, but these have only a modest (and calculable) effect on the gas temperature.

Wonderfully, the atomic physics of the 21cm transition is such that it couples to both the radiation and gas temperatures in a way that matters in the early universe. It didn’t have to be that way – most transitions don’t. Perhaps this is fodder for people who worry that the physics of our universe is fine-tuned.

There are two ways in which the spin temperature couples to that of the gas. During the dark ages, the coupling is governed simply by atomic collisions. By cosmic dawn collisions have become rare, but the appearance of the first stars provides UV radiation that drives the WouthuysenField effect. Consequently, we expect to see two absorption troughs: one around z ~ 20 at cosmic dawn, and another at still higher redshift (z ~ 100) during the dark ages.

Observation of this signal has the potential to revolutionize cosmology like detailed observations of the CMB did. The CMB is a snapshot of the universe during the narrow window of recombination at z = 1090. In principle, one can make the same sort of observation with the 21cm line, but at each and every redshift where absorption occurs: z = 16, 17, 18, 19 during cosmic dawn and again at z = 50, 100, 150 during the dark ages, with whatever frequency resolution you can muster. It will be like having the CMB over and over and over again, each redshift providing a snapshot of the universe at a different slice in time.

The information density available from the 21cm signal is in principle quite large. Before we can make use of any of this information, we have to detect it first. Therein lies the rub. This is an incredibly weak signal – we have to be able to detect that the CMB is a little dimmer than it would have been – and we have to do it in the face of much stronger foreground signals from the interstellar medium of our Galaxy and from man-made radio interference here on Earth. Fortunately, though much brighter than the signal we seek, these foregrounds have a different frequency dependence, so it should be possible to sort out, in principle.

Saying a thing can be done and doing it are two different things. This is already a long post, so I will refrain from raving about the technical challenges. Lets just say it’s Real Hard.

Many experimentalists take that as a challenge, and there are a good number of groups working hard to detect the cosmic 21cm signal. EDGES appears to have done it, reporting the detection of the signal at cosmic dawn in February. Here some weasel words are necessary, as the foreground subtraction is a huge challenge, and we always hope to see independent confirmation of a new signal like this. Those words of caution noted, I have to add that I’ve had the chance to read up on their methods, and I’m really impressed. Unlike the BICEP claim to detect primordial gravitational waves that proved to be bogus after being rushed to press release before refereering, the EDGES team have done all manner of conceivable cross-checks on their instrumentation and analysis. Nor did they rush to publish, despite the importance of the result. In short, I get exactly the opposite vibe from BICEP, whose foreground subtraction was obviously wrong as soon as I laid eyes on the science paper. If EDGES proves to be wrong, it isn’t for want of doing things right. In the meantime, I think we’re obliged to take their result seriously, and not just hope it goes away (which seems to be the first reaction to the impossible).

Here is what EDGES saw at cosmic dawn:

nature25792-f2
Fig. 2 from the EDGES detection paper. The dip, detected repeatedly in different instrumental configurations, shows a decrease in brightness temperature at radio frequencies, as expected from the 21cm absorbing some of the radiation from the CMB.

The unbelievable aspect of the EDGES observation is that it is too strong. Feeble as this signal is (a telescope brightness decrement of half a degree Kelvin), after subtracting foregrounds a thousand times stronger, it is twice as much as is possible in ΛCDM.

I made a quick evaluation of this, and saw that the observed signal could be achieved if the baryon fraction of the universe was high – basically, if cold dark matter did not exist. I have now had the time to make a more careful calculation, and publish some further predictions. The basic result from before stands: the absorption should be stronger without dark matter than with it.

The reason for this is simple. A universe full of dark matter decelerates rapidly at early times, before the acceleration of the cosmological constant kicks in. Without dark matter, the expansion more nearly coasts. Consequently, the universe is relatively larger from 10 < z < 1000, and the CMB photons have to traverse a larger path length to get here. They have to go about twice as far through the same density of hydrogen absorbers. It’s like putting on a second pair of sunglasses.

Quantitatively, the predicted absorption, both with dark matter and without, looks like:

predict21cmsignal
The predicted 21cm absorption with dark matter (red broken line) and without (blue line). Also shown (in grey) is the signal observed by EDGES.

 

The predicted absorption is consistent with the EDGES observation, within the errors, if there is no dark matter. More importantly, ΛCDM is not consistent with the data, at greater than 95% confidence. At cosmic dawn, I show the maximum possible signal. It could be weaker, depending on the spectra of the UV radiation emitted by the first stars. But it can’t be stronger. Taken at face value, the EDGES result is impossible in ΛCDM. If the observation is corroborated by independent experiments, ΛCDM as we know it will be falsified.

There have already been many papers trying to avoid this obvious conclusion. If we insist on retaining ΛCDM, the only way to modulate the strength of the signal is to alter the ratio of the radiation temperature to the gas temperature. Either we make the radiation “hotter,” or we make the gas cooler. If we allow ourselves this freedom, we can fit any arbitrary signal strength. This is ad hoc in the way that gives ad hoc a bad name.

We do not have this freedom – not really. The radiation temperature is measured in the CMB with great accuracy. Altering this would mess up the genuine success of ΛCDM in fitting the CMB. One could postulate an additional source, something that appears after recombination but before cosmic dawn to emit enough radio power throughout the cosmos to add to the radio brightness that is being absorbed. There is zero reason to expect such sources (what part of `cosmic dawn’ was ambiguous?) and no good way to make them at the right time. If they are primordial (as people love to imagine but are loathe to provide viable models for) then they’re also present at recombination: anything powerful enough to have the necessary effect will likely screw up the CMB.

Instead of magically increasing the radiation temperature, we might decrease the gas temperature. This seems no more plausible. The evolution of the gas temperature is a straightforward numerical calculation that has been checked by several independent codes. It has to be right at the time of recombination, or again, we mess up the CMB. The suggestions that I have heard seem mostly to invoke interactions between the gas and dark matter that offload some of the thermal energy of the gas into the invisible sink of the dark matter. Given how shy dark matter has been about interacting with normal matter in the laboratory, it seems pretty rich to imagine that it is eager to do so at high redshift. Even advocates of this scenario recognize its many difficulties.

For those who are interested, I cite a number of the scientific papers that attempt these explanations in my new paper. They all seem like earnest attempts to come to terms with what is apparently impossible. Many of these ideas also strike me as a form of magical thinking that stems from ΛCDM groupthink. After all, ΛCDM is so well established, any unexpected signal must be a sign of exciting new physics (on top of the new physics of dark matter and dark energy) rather than an underlying problem with ΛCDM itself.

The more natural interpretation is that the expansion history of the universe deviates from that predicted by ΛCDM. Simply taking away the dark matter gives a result consistent with the data. Though it did not occur to me to make this specific prediction a priori for an experiment that did not yet exist, all the necessary calculations had been done 15 years ago.

Using the same model, I make a genuine a priori prediction for the dark ages. For the specific NoCDM model I built in 2004, the 21cm absorption in the dark ages should again be about twice as strong as expected in ΛCDM. This seems fairly generic, but I know the model is not complete, so I wouldn’t be upset if it were not bang on.

I would be upset if ΛCDM were not bang on. The only thing that drives the signal in the dark ages is atomic scattering. We understand this really well. ΛCDM is now so well constrained by Planck that, if right, the 21cm absorption during the dark ages must follow the red line in the inset in the figure. The amount of uncertainty is not much greater than the thickness of the line. If ΛCDM fails this test, it would be a clear falsification, and a sign that we need to try something completely different.

Unfortunately, detecting the 21cm absorption signal during the dark ages is even harder than it is at cosmic dawn. At these redshifts (z ~ 100), the 21cm line (1420 MHz on your radio dial) is shifted beyond the ionospheric cutoff of the Earth’s atmosphere at 30 MHz. Frequencies this low cannot be observed from the ground. Worse, we have made the Earth itself a bright foreground contaminant of radio frequency interference.

Undeterred, there are multiple proposals to measure this signal by placing an antenna in space – in particular, on the far side of the moon, so that the moon shades the instrument from terrestrial radio interference. This is a great idea. The mere detection of the 21cm signal from the dark ages would be an accomplishment on par with the original detection of the CMB. It appears that it might also provide a decisive new way of testing our cosmological model.

There are further tests involving the shape of the 21cm signal, its power spectrum (analogous to the power spectrum of the CMB), how structure grows in the early ages of the universe, and how massive the neutrino is. But that’s enough for now.

e694e8819c5f9d9d1638e4638a1e7bce

Most likely beer. Or a cosmo. That’d be appropriate. I make a good pomegranate cosmo.


*Note that a variety of astronomical observations had established the concordance cosmology before Type Ia supernovae detected cosmic acceleration and well-resolved observations of the CMB found a flat cosmic geometry.

Solution Aversion

Solution Aversion

I have had the misfortune to encounter many terms for psychological dysfunction in many venues. Cognitive dissonance, confirmation bias, the Dunning-Kruger effect – I have witnessed them all, all too often, both in the context of science and elsewhere. Those of us who are trained as scientists are still human: though we fancy ourselves immune, we are still subject to the same cognitive foibles as everyone else. Generally our training only suffices us to get past the oft-repeated ones.

Solution aversion is the knee-jerk reaction we have to deny the legitimacy of a problem when we don’t like the solution admitting said problem would entail. An obvious example in the modern era is climate change. People who deny the existence of this problem are usually averse to its solution.

Let me give an example from my own experience. To give some context requires some circuitous story-telling. We’ll start with climate change, but eventually get to cosmology.

Recently I encountered a lot of yakking on social media about an encounter between Bill Nye (the science guy) and Will Happer in a dispute about climate change. The basic gist of most of the posts was that of people (mostly scientists, mostly young enough to have watched Bill Nye growing up) cheering on Nye as he “eviscerated” Happer’s denialism. I did not watch any of the exchange, so I cannot evaluate the relative merits of their arguments. However, there is a more important issue at stake here: credibility.

Bill Nye has done wonderful work promoting science. Younger scientists often seem to revere him as a sort of Mr. Rogers of science. Which is great. But he is a science-themed entertainer, not an actual scientist. His show demonstrates basic, well known phenomena at a really, well, juvenile level. That’s a good thing – it clearly helped motivate a lot of talented people to become scientists. But recapitulating well-known results is very different from doing the cutting edge science that establishes new results that will become the fodder of future textbooks.

Will Happer is a serious scientist. He has made numerous fundamental contributions to physics. For example, he pointed out that the sodium layer in the upper atmosphere could be excited by a laser to create artificial guide stars for adaptive optics, enabling ground-based telescopes to achieve resolutions comparable to that of the Hubble space telescope. I suspect his work for the JASON advisory group led to the implementation of adaptive optics on Air Force telescopes long before us astronomers were doing it. (This is speculation on my part: I wouldn’t know; it’s classified.)

My point is that, contrary to the wishful thinking on social media, Nye has no more standing to debate Happer than Mickey Mouse has to debate Einstein. Nye, like Mickey Mouse, is an entertainer. Einstein is a scientist. If you think that comparison is extreme, that’s because there aren’t many famous scientists whose name I can expect everyone to know. A better analogy might be comparing Jon Hirschtick (a successful mechanical engineer, Nye’s field) to I.I. Rabi (a prominent atomic physicist like Happer), but you’re less likely to know who those people are. Most serious scientists do not cultivate public fame, and the modern examples I can think of all gave up doing real science for the limelight of their roles as science entertainers.

Another important contribution Happer made was to the study and technology of spin polarized nuclei. If you place an alkali element and a noble gas together in vapor, they may form weak van der Waals molecules. An alkali is basically a noble gas with a spare electron, so the two can become loosely bound, sharing the unwanted electron between them. It turns out – as Happer found and explained – that the wavefunction of the spare electron overlaps with the nucleus of the noble. By spin polarizing the electron through the well known process of optical pumping with a laser, it is possible to transfer the spin polarization to the nucleus. In this way, one can create large quantities of polarized nuclei, an amazing feat. This has found use in medical imaging technology. Noble gases are chemically inert, so safe to inhale. By doing so, one can light up lung tissue that is otherwise invisible to MRI and other imaging technologies.

I know this because I worked on it with Happer in the mid-80s. I was a first year graduate student in physics at Princeton where he was a professor. I did not appreciate the importance of what we were doing at the time. Will was a nice guy, but he was also my boss and though I respected him I did not much like him. I was a high-strung, highly stressed, 21 year old graduate student displaced from friends and familiar settings, so he may not have liked me much, or simply despaired of me amounting to anything. Mostly I blame the toxic arrogance of the physics department we were both in – Princeton is very much the Slytherin of science schools.

In this environment, there weren’t many opportunities for unguarded conversations. I do vividly recall some of the few that happened. In one instance, we had heard a talk about the potential for industrial activity to add enough carbon dioxide to the atmosphere to cause an imbalance in the climate. This was 1986, and it was the first I had heard of what is now commonly referred to as climate change. I was skeptical, and asked Will’s opinion. I was surprised by the sudden vehemence of his reaction:

“We can’t turn off the wheels of industry, and go back to living like cavemen.”

I hadn’t suggested any such thing. I don’t even recall expressing support for the speaker’s contention. In retrospect, this is a crystal clear example of solution aversion in action. Will is a brilliant guy. He leapt ahead of the problem at hand to see the solution being a future he did not want. Rejecting that unacceptable solution became intimately tied, psychologically, to the problem itself. This attitude has persisted to the present day, and Happer is now known as one of the most prominent scientists who is also a climate change denier.

Being brilliant never makes us foolproof against being wrong. If anything, it sets us up for making mistakes of enormous magnitude.

There is a difference between the problem and the solution. Before we debate the solution, we must first agree on the problem. That should, ideally, be done dispassionately and without reference to the solutions that might stem from it. Only after we agree on the problem can we hope to find a fitting solution.

In the case of climate change, it might be that we decide the problem is not so large as to require drastic action. Or we might hope that we can gradually wean ourselves away from fossil fuels. That is easier said than done, as many people do not seem to appreciate the magnitude of the energy budget what needs replacing. But does that mean we shouldn’t even try? That seems to be the psychological result of solution aversion.

Either way, we have to agree and accept that there is a problem before we can legitimately decide what to do about it. Which brings me back to cosmology. I did promise you a circuitous bit of story-telling.

Happer’s is just the first example I encountered of a brilliant person coming to a dubious conclusion because of solution aversion. I have had many colleagues who work on cosmology and galaxy formation say straight out to me that they would only consider MOND “as a last resort.” This is a glaring, if understandable, example of solution aversion. We don’t like MOND, so we’re only willing to consider it when all other options have failed.

I hope it is obvious from the above that this attitude is not a healthy one in science. In cosmology, it is doubly bad. Just when, exactly, do we reach the last resort?

We’ve already accepted that the universe is full of dark matter, some invisible form of mass that interacts gravitationally but not otherwise, has no place in the ridiculously well tested Standard Model of particle physics, and has yet to leave a single shred of credible evidence in dozens of super-sensitive laboratory experiments. On top of that, we’ve accepted that there is also a distinct dark energy that acts like antigravity to drive the apparent acceleration of the expansion rate of the universe, conserving energy by the magic trick of a sign error in the equation of state that any earlier generation of physicists would have immediately rejected as obviously unphysical. In accepting these dark denizens of cosmology we have granted ourselves essentially infinite freedom to fine-tune any solution that strikes our fancy. Just what could possibly constitute the last resort of that?

hammerandnails
When you have a supercomputer, every problem looks like a simulation in need of more parameters.

Being a brilliant scientist never precludes one from being wrong. At best, it lengthens the odds. All too often, it leads to a dangerous hubris: we’re so convinced by, and enamored of, our elaborate and beautiful theories that we see only the successes and turn a blind eye to the failures, or in true partisan fashion, try to paint them as successes. We can’t have a sensible discussion about what might be right until we’re willing to admit – seriously, deep-down-in-our-souls admit – that maybe ΛCDM is wrong.

I fear the field has gone beyond that, and is fissioning into multiple, distinct branches of science that use the same words to mean different things. Already “dark matter” means something different to particle physicists and astronomers, though they don’t usually realize it. Soon our languages may become unrecognizable dialects to one another; already communication across disciplinary boundaries is strained. I think Kuhn noted something about different scientists not recognizing what other scientists were doing as science, nor regarding the same evidence in the same way. Certainly we’ve got that far already, as successful predictions of the “other” theory are dismissed as so much fake news in a world unhinged from reality.

Degenerating problemshift: a wedged paradigm in great tightness

Degenerating problemshift: a wedged paradigm in great tightness

Reading Merritt’s paper on the philosophy of cosmology, I was struck by a particular quote from Lakatos:

A research programme is said to be progressing as long as its theoretical growth anticipates its empirical growth, that is as long as it keeps predicting novel facts with some success (“progressive problemshift”); it is stagnating if its theoretical growth lags behind its empirical growth, that is as long as it gives only post-hoc explanations either of chance discoveries or of facts anticipated by, and discovered in, a rival programme (“degenerating problemshift”) (Lakatos, 1971, pp. 104–105).

The recent history of modern cosmology is rife with post-hoc explanations of unanticipated facts. The cusp-core problem and the missing satellites problem are prominent examples. These are explained after the fact by invoking feedback, a vague catch-all that many people agree solves these problems even though none of them agree on how it actually works.

FeedbackCartoonSilkMamon
Cartoon of the feedback explanation for the difference between the galaxy luminosity function (blue line) and the halo mass function (red line). From Silk & Mamon (2012).

There are plenty of other problems. To name just a few: satellite planes (unanticipated correlations in phase space), the emptiness of voids, and the early formation of structure  (see section 4 of Famaey & McGaugh for a longer list and section 6 of Silk & Mamon for a positive spin on our list). Each problem is dealt with in a piecemeal fashion, often by invoking solutions that contradict each other while buggering the principle of parsimony.

It goes like this. A new observation is made that does not align with the concordance cosmology. Hands are wrung. Debate is had. Serious concern is expressed. A solution is put forward. Sometimes it is reasonable, sometimes it is not. In either case it is rapidly accepted so long as it saves the paradigm and prevents the need for serious thought. (“Oh, feedback does that.”) The observation is no longer considered a problem through familiarity and exhaustion of patience with the debate, regardless of how [un]satisfactory the proffered solution is. The details of the solution are generally forgotten (if ever learned). When the next problem appears the process repeats, with the new solution often contradicting the now-forgotten solution to the previous problem.

This has been going on for so long that many junior scientists now seem to think this is how science is suppose to work. It is all they’ve experienced. And despite our claims to be interested in fundamental issues, most of us are impatient with re-examining issues that were thought to be settled. All it takes is one bold assertion that everything is OK, and the problem is perceived to be solved whether it actually is or not.

8631e895433bc3d1fa87e3d857fc7500
“Is there any more?”

That is the process we apply to little problems. The Big Problems remain the post hoc elements of dark matter and dark energy. These are things we made up to explain unanticipated phenomena. That we need to invoke them immediately casts the paradigm into what Lakatos called degenerating problemshift. Once we’re there, it is hard to see how to get out, given our propensity to overindulge in the honey that is the infinity of free parameters in dark matter models.

Note that there is another aspect to what Lakatos said about facts anticipated by, and discovered in, a rival programme. Two examples spring immediately to mind: the Baryonic Tully-Fisher Relation and the Radial Acceleration Relation. These are predictions of MOND that were unanticipated in the conventional dark matter picture. Perhaps we can come up with post hoc explanations for them, but that is exactly what Lakatos would describe as degenerating problemshift. The rival programme beat us to it.

In my experience, this is a good description of what is going on. The field of dark matter has stagnated. Experimenters look harder and harder for the same thing, repeating the same experiments in hope of a different result. Theorists turn knobs on elaborate models, gifting themselves new free parameters every time they get stuck.

On the flip side, MOND keeps predicting novel facts with some success, so it remains in the stage of progressive problemshift. Unfortunately, MOND remains incomplete as a theory, and doesn’t address many basic issues in cosmology. This is a different kind of unsatisfactory.

In the mean time, I’m still waiting to hear a satisfactory answer to the question I’ve been posing for over two decades now. Why does MOND get any predictions right? It has had many a priori predictions come true. Why does this happen? It shouldn’t. Ever.

Cepheids & Gaia: No Systematic in the Hubble Constant

Cepheids & Gaia: No Systematic in the Hubble Constant

Casertano et al. have used Gaia to provide a small but important update in the debate over the value of the Hubble Constant. The ESA Gaia mission is measuring parallaxes for billions of stars. This is fundamental data that will advance astronomy in many ways, no doubt settling long standing problems but also raising new ones – or complicating existing ones.

Traditional measurements of the H0 are built on the distance scale ladder, in which distances to nearby objects are used to bootstrap outwards to more distant ones. This works, but is also an invitation to the propagation of error. A mistake in the first step affects all others. This is a long-standing problem that informs the assumption that the tension between H0 = 67 km/s/Mpc from Planck and H0 = 73 km/s/Mpc from local measurements will be resolved by some systematic error – presumably in the calibration of the distance ladder.

Well, not so far. Gaia has now measured enough Cepheids in our own Milky Way to test the calibration used to measure the distances of external galaxies via Cepheids. This was one of the shaky steps where things seemed most likely to go off. But no – the scales are consistent at the 0.3% level. For now, direct measurement of the expansion rate remains H0 = 73 km/s/Mpc.

Critical Examination of the Impossible

Critical Examination of the Impossible

It has been proposal season for the Hubble Space Telescope, so many astronomers have been busy with that. I am no exception. Talking to others, it is clear that there remain many more excellent Hubble projects than available observing time.

So I haven’t written here for a bit, and I have other tasks to get on with. I did get requests for a report on the last conference I went to, Beyond WIMPs: from Theory to Detection. They have posted video from the talks, so anyone who is interested may watch.

I think this is the worst talk I’ve given in 20 years. Maybe more. Made the classic mistake of trying to give the talk the organizers asked for rather than the one I wanted to give. Conference organizers mean well, but they usually only have a vague idea of what they imagine you’ll say. You should always ignore that and say what you think is important.

When speaking or writing, there are three rules: audience, audience, audience. I was unclear what the audience would be when I wrote the talk, and it turns out there were at least four identifiably distinct audiences in attendance. There were skeptics – particle physicists who were concerned with the state of their field and that of cosmology, there were the faithful – particle physicists who were not in the least concerned about this state of affairs, there were the innocent – grad students with little to no background in astronomy, and there were experts – astroparticle physicists who have a deep but rather narrow knowledge of relevant astronomical data. I don’t think it would have been possible to address the assigned topic (a “Critical Examination of the Existence of Dark Matter“) in a way that satisfied all of these distinct audiences, and certainly not in the time allotted (or even in an entire semester).

It is tempting to give an interruption by interruption breakdown of the sociology, but you may judge that for yourselves. The one thing I got right was what I said at the outset: Attitude Matters. You can see that on display throughout.

IMG_5460
This comic has been hanging on a colleague’s door for decades.

In science as in all matters, if you come to a problem sure that you already know the answer, you will leave with that conviction. No data nor argument will shake your faith. Only you can open your own mind.

Cosmology and Convention (continued)

Cosmology and Convention (continued)
Note: this is a guest post by David Merritt, following on from his paper on the philosophy of science as applied to aspects of modern cosmology.

Stacy kindly invited me to write a guest post, expanding on some of the arguments in my paper. I’ll start out by saying that I certainly don’t think of my paper as a final word on anything. I see it more like an opening argument — and I say this, because it’s my impression that the issues which it raises have not gotten nearly the attention they deserve from the philosophers of science. It is that community that I was hoping to reach, and that fact dictated much about the content and style of the paper. Of course, I’m delighted if astrophysicists find something interesting there too.

My paper is about epistemology, and in particular, whether the standard cosmological model respects Popper’s criterion of falsifiability — which he argued (quite convincingly) is a necessary condition for a theory to be considered scientific. Now, falsifying a theory requires testing it, and testing it means (i) using the theory to make a prediction, then (ii) checking to see if the prediction is correct. In the case of dark matter, the cleanest way I could think of to do this was via so-called  “direct detection”, since the rotation curve of the Milky Way makes a pretty definite prediction about the density of dark matter at the Sun’s location. (Although as I argued, even this is not enough, since the theory says nothing at all about the likelihood that the DM particles will interact with normal matter even if they are present in a detector.)

What about the large-scale evidence for dark matter — things like the power spectrum of density fluctuations, baryon acoustic oscillations, the CMB spectrum etc.? In the spirit of falsification, we can ask what the standard model predicts for these things; and the answer is: it does not make any definite prediction. The reason is that — to predict quantities like these — one needs first to specify the values of a set of additional parameters: things like the mean densities of dark and normal matter; the numbers that determine the spectrum of initial density fluctuations; etc. There are roughly half a dozen such “free parameters”. Cosmologists never even try to use data like these to falsify their theory; their goal is to make the theory work, and they do this by picking the parameter values that optimize the fit between theory and data.

Philosophers of science are quite familiar with this sort of thing, and they have a rule: “You can’t use the data twice.” You can’t use data to adjust the parameters of a theory, and then turn around and claim that those same data support the theory.  But this is exactly what cosmologists do when they argue that the existence of a “concordance model” implies that the standard cosmological model is correct. What “concordance” actually shows is that the standard model can be made consistent: i.e. that one does not require different values for the same parameter. Consistency is good, but by itself it is a very weak argument in favor of a theory’s correctness. Furthermore, as Stacy has emphasized, the supposed “concordance” vanishes when you look at the values of the same parameters as they are determined in other, independent ways. The apparent tension in the Hubble constant is just the latest example of this; another, long-standing example is the very different value for the mean baryon density implied by the observed lithium abundance. There are other examples. True “convergence” in the sense understood by the philosophers — confirmation of the value of a single parameter in multiple, independent experiments — is essentially lacking in cosmology.

Now, even though those half-dozen parameters give cosmologists a great deal of freedom to adjust their model and to fit the data, the freedom is not complete. This is because — when adjusting parameters — they fix certain things: what Imre Lakatos called the “hard core” of a research program: the assumptions that a theorist is absolutely unwilling to abandon, come hell or high water. In our case, the “hard core” includes Einstein’s theory of gravity, but it also includes a number of less-obvious things; for instance, the assumption that the dark matter responds to gravity in the same way as any collisionless fluid of normal matter would respond. (The latter assumption is not made in many alternative theories.) Because of the inflexibility of the “hard core”, there are going to be certain parameter values that are also more-or-less fixed by the data. When a cosmologist says “The third peak in the CMB requires dark matter”, what she is really saying is: “Assuming the fixed hard core, I find that any reasonable fit to the data requires the parameter defining the dark-matter density to be significantly greater than zero.” That is a much weaker statement than “Dark matter must exist”. Statements like “We know that dark matter exists” put me in mind of the 18th century chemists who said things like “Based on my combustion experiments, I conclude that phlogiston exists and that it has a negative mass”. We know now that the behavior the chemists were ascribing to the release of phlogiston was actually due to oxidation. But the “hard core” of their theory (“Combustibles contain an inflammable principle which they release upon burning”) forbade them from considering different models. It took Lavoisier’s arguments to finally convince them of the existence of oxygen.

The fact that the current cosmological model has a fixed “hard core” also implies that — in principle — it can be falsified. But, at the risk of being called a cynic, I have little doubt that if a new, falsifying observation should appear, even a very compelling one, the community will respond as it has so often in the past: via a conventionalist stratagem. Pavel Kroupa has a wonderful graphic, reproduced below, that shows just how often predictions of the standard cosmological model have been falsified — a couple of dozen times, according to latest count; and these are only the major instances. Historians and philosophers of science have documented that theories that evolve in this way often end up on the scrap heap. To the extent that my paper is of interest to the astronomical community, I hope that it gets people to thinking about whether the current cosmological model is headed in that direction.

Kroupa_F14_SMoCfailures
Fig. 14 from Kroupa (2012) quantifying setbacks to the Standard Model of Cosmology (SMoC).