Dwarf Satellite Galaxies. III. The dwarfs of Andromeda

Dwarf Satellite Galaxies. III. The dwarfs of Andromeda

Like the Milky Way, our nearest giant neighbor, Andromeda (aka M31), has several dozen dwarf satellite galaxies. A few of these were known and had measured velocity dispersions at the time of my work with Joe Wolf, as discussed previously. Also like the Milky Way, the number of known objects has grown rapidly in recent years – thanks in this case largely to the PAndAS survey.

PAndAS imaged the area around M31 and M33, finding many individual red giant stars. These trace out the debris from interactions and mergers as small dwarfs are disrupted and consumed by their giant host. They also pointed up the existence of previously unknown dwarf satellites.

M31fromPANDAS_ McC2012_EPJ_19_01003
The PAndAS survey field. Dwarf satellites are circled.

As the PAndAS survey started reporting the discovery of new dwarf satellites around Andromeda, it occurred to me that this provided the opportunity to make genuine a priori predictions. These are the gold standard of the scientific method. We could use the observed luminosity and size of the newly discovered dwarfs to predict their velocity dispersions.

I tried to do this for both ΛCDM and MOND. I will not discuss the ΛCDM case much, because it can’t really be done. But it is worth understanding why this is.

In ΛCDM, the velocity dispersion is determined by the dark matter halo. This has only a tenuous connection to the observed stars, so just knowing how big and bright a dwarf is doesn’t provide much predictive power about the halo. This can be seen from this figure by Tollerud et al (2011):

Tollerud2011_ml_scatter
Virial mass of the dark matter halo as a function of galaxy luminosity. Dwarfs satellites reside in the wide colored band of low luminosities.

This graph is obtained by relating the number density of galaxies (an observed quantity) to that of the dark matter halos in which they reside (a theoretical construct). It is highly non-linear, deviating strongly from the one-to-one line we expected early on. There is no reason to expect this particular relation; it is imposed on us by the fact that the observed luminosity function of galaxies is rather flat while the predicted halo mass function is steep. Nowadays, this is usually called the missing satellite problem, but this is a misnomer as it pervades the field.

Addressing the missing satellites problem would be another long post, so lets just accept that the relation between mass and light has to follow something like that illustrated above. If a dwarf galaxy has a luminosity of a million suns, one can read off the graph that it should live in a dark halo with a mass of about 1010 M. One could use this to predict the velocity dispersion, but not very precisely, because there’s a big range corresponding to that luminosity (the bands in the figure). It could be as much as 1011 M or as little as 109 M. This corresponds to a wide range of velocity dispersions. This wide range is unavoidable because of the difference in the luminosity function and halo mass function. Small variations in one lead to big variations in the other, and some scatter in dark halo properties is unavoidable.

Consequently, we only have a vague range of expected velocity dispersions in ΛCDM. In practice, we never make this prediction. Instead, we compare the observed velocity dispersion to the luminosity and say “gee, this galaxy has a lot of dark matter” or “hey, this one doesn’t have much dark matter.” There’s no rigorously testable prior.

In MOND, what you see is what you get. The velocity dispersion has to follow from the observed stellar mass. This is straightforward for isolated galaxies: M* ∝ σ4 – this is essentially the equivalent of the Tully-Fisher relation for pressure supported systems. If we can estimate the stellar mass from the observed luminosity, the predicted velocity dispersion follows.

Many dwarf satellites are not isolated in the MONDian sense: they are subject to the external field effect (EFE) from their giant hosts. The over-under for whether the EFE applies is the point when the internal acceleration from all the stars of the dwarf on each other is equal to the external acceleration from orbiting the giant host. The amplitude of the discrepancy in MOND depends on how low the total acceleration is relative to the critical scale a0. The external field in effect adds some acceleration that wouldn’t otherwise be there, making the discrepancy less than it would be for an isolated object. This means that two otherwise identical dwarfs may be predicted to have different velocity dispersions is they are or are not subject to the EFE. This is a unique prediction of MOND that has no analog in ΛCDM.

It is straightforward to derive the equation to predict velocity dispersions in the extreme limits of isolated (aex ≪ ain < a0) or EFE dominated (ain ≪ aex < a0) objects. In reality, there are many objects for which ain ≈ aex, and no simple formula applies. In practice, we apply the formula that more nearly applies, and pray that this approximation is good enough.

There are many other assumptions and approximations that must be made in any theory: that an object is spherical, isotropic, and in dynamical equilibrium. All of these must fail at some level, but it is the last one that is the most serious concern. In the case of the EFE, one must also make the approximation that the object is in equilibrium at the current level of the external field. That is never true, as both the amplitude and the vector of the external field vary as a dwarf orbits its host. But it might be an adequate approximation if this variation is slow. In the case of a circular orbit, only the vector varies. In general the orbits are not known, so we make the instantaneous approximation and once again pray that it is good enough. There is a fairly narrow window between where the EFE becomes important and where we slip into the regime of tidal disruption, but lets plow ahead and see how far we can get, bearing in mind that the EFE is a dynamical variable of which we only have a snapshot.

To predict the velocity dispersion in the isolated case, all we need to know is the luminosity and a stellar mass-to-light ratio. Assuming the dwarfs of Andromeda to be old stellar populations, I adopted a V-band mass-to-light ratio of 2 give or take a factor of 2. That usually dominates the uncertainty, though the error in the distance can sometimes impact the luminosity at a level that impacts the prediction.

To predict the velocity dispersion in the EFE case, we again need the stellar mass, but now also need to know the size of the stellar system and the intensity of the external field to which it is subject. The latter depends on the mass of the host galaxy and the distance from it to the dwarf. This latter quantity is somewhat fraught: it is straightforward to measure the projected distance on the sky, but we need the 3D distance – how far in front or behind each dwarf is as well as its projected distance from the host. This is often a considerable contributor to the error budget. Indeed, some dwarfs may be inferred to be in the EFE regime for the low end of the range of adopted stellar mass-to-light ratio, and the isolated regime for the high end.

In this fashion, we predicted velocity dispersions for the dwarfs of Andromeda. We in this case were Milgrom and myself. I had never collaborated with him before, and prefer to remain independent. But I also wanted to be sure I got the details described above right. Though it wasn’t much work to make the predictions once the preliminaries were established, it was time consuming to collect and vet the data. As we were writing the paper, velocity dispersion measurements started to appear. People like Michelle Collins, Erik Tollerud, and Nicolas Martin were making follow-up observations, and publishing velocity dispersion for the objects we were making predictions for. That was great, but they were too good – they were observing and publishing faster than we could write!

Nevertheless, we managed to make and publish a priori predictions for 10 dwarfs before any observational measurements were published. We also made blind predictions for the other known dwarfs of Andromeda, and checked the predicted velocity dispersions against all measurements that we could find in the literature. Many of these predictions were quickly tested by on-going programs (i.e., people were out to measure velocity dispersions, whether we predicted them or not). Enough data rolled in that we were soon able to write a follow-up paper testing our predictions.

Nailed it. Good data were soon available to test the predictions for 8 of the 10* a priori cases. All 8 were consistent with our predictions. I was particularly struck by the case of And XXVIII, which I had called out as perhaps the best test. It was isolated, so the messiness of the EFE didn’t apply, and the uncertainties were low. Moreover, the predicted velocity dispersion was low – a good deal lower than broadly expected in ΛCDM: 4.3 km/s, with an uncertainty just under 1 km/s. Two independent observations were subsequently reported. One found 4.9 ± 1.6 km/s, the other 6.6 ± 2.1 km/s, both in good agreement within the uncertainties.

We made further predictions in the second paper as people had continued to discover new dwarfs. These also came true. Here is a summary plot for all of the dwarfs of Andromeda:

AndDwarfswithGoldStars.002
The velocity dispersions of the dwarf satellites of Andromeda. Each numbered box corresponds to one dwarf (x=1 is for And I and so on). Measured velocity dispersions have a number next to them that is the number of stars on which the measurement is based. MOND predictions are circles: green if isolated, open if the EFE applies. Points appear within each box in the order they appeared in the literature, from left to right. The vast majority of Andromeda’s dwarfs are consistent with MOND (large green circles). Two cases are ambiguous (large yellow circles), having velocity dispersions based only a few stars. Only And V appears to be problematic (large red circle).

MOND works well for And I, And II, And III, And VI, And VII, And IX, And X, And XI, And XII, And XIII, And XIV, And XV, And XVI, And XVII, And XVIII, And XIX, And XX, And XXI, And XXII, And XXIII, And XXIV, And XXV, And XXVIII, And XXIX, And XXXI, And XXXII, and And XXXIII. There is one problematic case: And V. I don’t know what is going on there, but note that systematic errors frequently happen in astronomy. It’d be strange if there weren’t at least one goofy case.

Nevertheless, the failure of And V could be construed as a falsification of MOND. It ought to work in every single case. But recall the discussion of assumptions and uncertainties above. Is falsification really the story these data tell?

We do have experience with various systematic errors. For example, we predicted that the isolated dwarfs spheroidal Cetus should have a velocity dispersion in MOND of 8.2 km/s. There was already a published measurement of 17 ± 2 km/s, so we reported that MOND was wrong in this case by over 3σ. Or at least we started to do so. Right before we submitted that paper, a new measurement appeared: 8.3 ± 1 km/s. This is an example of how the data can sometimes change by rather more than the formal error bars suggest is possible. In this case, I suspect the original observations lacked the spectral resolution to resolve the velocity dispersion. At any rate, the new measurement (8.3 km/s) was somewhat more consistent with our prediction (8.2 km/s).

The same predictions cannot even be made in ΛCDM. The velocity data can always be fit once they are in hand. But there is no agreed method to predict the velocity dispersion of a dwarf from its observed luminosity. As discussed above, this should not even be possible: there is too much scatter in the halo mass-stellar mass relation at these low masses.

An unsung predictive success of MOND absent from the graph above is And IV. When And IV was discovered in the general direction of Andromeda, it was assumed to be a new dwarf satellite – hence the name. Milgrom looked at the velocities reported for this object, and said it had to be a background galaxy. No way it could be a dwarf satellite – at least not in MOND. I see no reason why it couldn’t have been in ΛCDM. It is absent from the graph above, because it was subsequently confirmed to be much farther away (7.2 Mpc vs. 750 kpc for Andromeda).

The box for And XVII is empty because this system is manifestly out of equilibrium. It is more of a stellar stream than a dwarf, appearing as a smear in the PAndAS image rather than as a self-contained dwarf. I do not recall what the story with the other missing object (And VIII) is.

While writing the follow-up paper, I also noticed that there were a number of Andromeda dwarfs that were photometrically indistinguishable: basically the same in terms of size and stellar mass. But some were isolated while others were subject to the EFE. MOND predicts that the EFE cases should have lower velocity dispersion than the isolated equivalents.

AndDwarfswithGoldStars.003
The velocity dispersions of the dwarfs of Andromeda, highlighting photometrically matched pairs – dwarfs that should be indistinguishable, but aren’t because of the EFE.

And XXVIII (isolated) has a higher velocity dispersion than its near-twin And XVII (EFE). The same effect might be acting in And XVIII (isolated) and And XXV (EFE). This is clear if we accept the higher velocity dispersion measurement for And XVIII, but an independent measurements begs to differ. The former has more stars, so is probably more reliable, but we should be cautious. The effect is not clear in And XVI (isolated) and And XXI (EFE), but the difference in the prediction is small and the uncertainties are large.

An aggressive person might argue that the pairs of dwarfs is a positive detection of the EFE. I don’t think the data for the matched pairs warrant that, at least not yet. On the other hand, the appropriate use of the EFE was essential to all the predictions, not just the matched pairs.

The positive detection of the EFE is important, as it is a unique prediction of MOND. I see no way to tune ΛCDM galaxy simulations to mimic this effect. Of course, there was a  very recent time when it seemed impossible for them to mimic the isolated predictions of MOND. They claim to have come a long way in that regard.

But that’s what we’re stuck with: tuning ΛCDM to make it look like MOND. This is why a priori predictions are important. There is ample flexibility to explain just about anything with dark matter. What we can’t seem to do is predict the same things that MOND successfully predicts… predictions that are both quantitative and very specific. We’re not arguing that dwarfs in general live in ~15 or 30 km/s halos, as we must in ΛCDM. In MOND we can say this dwarf will have this velocity dispersion and that dwarf will have that velocity dispersion. We can distinguish between 4.9 and 7.3 km/s. And we can do it over and over and over. I see no way to do the equivalent in ΛCDM, just as I see no way to explain the acoustic power spectrum of the CMB in MOND.

This is not to say there are no problematic cases for MOND. Read, Walker, & Steger have recently highlighted the matched pair of Draco and Carina as an issue. And they are – though here I already have reason to suspect Draco is out of equilibrium, which makes it challenging to analyze. Whether it is actually out of equilibrium or not is a separate question.

I am not thrilled that we are obliged to invoke non-equilibrium effects in both theories. But there is a difference. Brada & Milgrom provided a quantitative criterion to indicate when this was an issue before I ran into the problem. In ΛCDM, the low velocity dispersions of objects like And XIX, XXI, XXV and Crater 2 came as a complete surprise despite having been predicted by MOND. Tidal disruption was only invoked after the fact – and in an ad hoc fashion. There is no way to know in advance which dwarfs are affected, as there is no criterion equivalent to that of Brada. We just say “gee, that’s a low velocity dispersion. Must have been disrupted.” That might be true, but it gives no explanation for why MOND predicted it in the first place – which is to say, it isn’t really an explanation at all.

I still do not understand is why MOND gets any predictions right if ΛCDM is the universe we live in, let alone so many. Shouldn’t happen. Makes no sense.

If this doesn’t confuse you, you are not thinking clearly.


*The other two dwarfs were also measured, but with only 4 stars in one and 6 in the other. These are too few for a meaningful velocity dispersion measurement.

Advertisements

Dwarf Satellite Galaxies. II. Non-equilibrium effects in ultrafaint dwarfs

Dwarf Satellite Galaxies. II. Non-equilibrium effects in ultrafaint dwarfs

I have been wanting to write about dwarf satellites for a while, but there is so much to tell that I didn’t think it would fit in one post. I was correct. Indeed, it was worse than I thought, because my own experience with low surface brightness (LSB) galaxies in the field is a necessary part of the context for my perspective on the dwarf satellites of the Local Group. These are very different beasts – satellites are pressure supported, gas poor objects in orbit around giant hosts, while field LSB galaxies are rotating, gas rich galaxies that are among the most isolated known. However, so far as their dynamics are concerned, they are linked by their low surface density.

Where we left off with the dwarf satellites, circa 2000, Ursa Minor and Draco remained problematic for MOND, but the formal significance of these problems was not great. Fornax, which had seemed more problematic, was actually a predictive success: MOND returned a low mass-to-light ratio for Fornax because it was full of young stars. The other known satellites, Carina, Leo I, Leo II, Sculptor, and Sextans, were all consistent with MOND.

The Sloan Digital Sky Survey resulted in an explosion in the number of satellites galaxies discovered around the Milky Way. These were both fainter and lower surface brightness than the classical dwarfs named above. Indeed, they were often invisible as objects in their own right, being recognized instead as groupings of individual stars that shared the same position in space and – critically – velocity. They weren’t just in the same place, they were orbiting the Milky Way together. To give short shrift to a long story, these came to be known as ultrafaint dwarfs.

Ultrafaint dwarf satellites have fewer than 100,000 stars. That’s tiny for a stellar system. Sometimes they had only a few hundred. Most of those stars are too faint to see directly. Their existence is inferred from a handful of red giants that are actually observed. Where there are a few red giants orbiting together, there must be a source population of fainter stars. This is a good argument, and it is likely true in most cases. But the statistics we usually rely on become dodgy for such small numbers of stars: some of the ultrafaints that have been reported in the literature are probably false positives. I have no strong opinion on how many that might be, but I’d be really surprised if it were zero.

Nevertheless, assuming the ultrafaints dwarfs are self-bound galaxies, we can ask the same questions as before. I was encouraged to do this by Joe Wolf, a clever grad student at UC Irvine. He had a new mass estimator for pressure supported dwarfs that we decided to apply to this problem. We used the Baryonic Tully-Fisher Relation (BTFR) as a reference, and looked at it every which-way. Most of the text is about conventional effects in the dark matter picture, and I encourage everyone to read the full paper. Here I’m gonna skip to the part about MOND, because that part seems to have been overlooked in more recent commentary on the subject.

For starters, we found that the classical dwarfs fall along the extrapolation of the BTFR, but the ultrafaint dwarfs deviate from it.

Fig1_annotated
Fig. 1 from McGaugh & Wolf (2010, annotated). The BTFR defined by rotating galaxies (gray points) extrapolates well to the scale of the dwarf satellites of the Local Group (blue points are the classical dwarf satellites of the Milky Way; red points are satellites of Andromeda) but not to the ultrafaint dwarfs (green points). Two of the classical dwarfs also fall off of the BTFR: Draco and Ursa Minor.

The deviation is not subtle, at least not in terms of mass. The ultrataints had characteristic circular velocities typical of systems 100 times their mass! But the BTFR is steep. In terms of velocity, the deviation is the difference between the 8 km/s typically observed, and the ~3 km/s needed to put them on the line. There are a large number of systematic effects errors that might arise, and all act to inflate the characteristic velocity. See the discussion in the paper if you’re curious about such effects; for our purposes here we will assume that the data cannot simply be dismissed as the result of systematic errors, though one should bear in mind that they probably play a role at some level.

Taken at face value, the ultrafaint dwarfs are a huge problem for MOND. An isolated system should fall exactly on the BTFR. These are not isolated systems, being very close to the Milky Way, so the external field effect (EFE) can cause deviations from the BTFR. However, these are predicted to make the characteristic internal velocities lower than the isolated case. This may in fact be relevant for the red points that deviate a bit in the plot above, but we’ll return to that at some future point. The ultrafaints all deviate to velocities that are too high, the opposite of what the EFE predicts.

The ultrafaints falsify MOND! When I saw this, all my original confirmation bias came flooding back. I had pursued this stupid theory to ever lower surface brightness and luminosity. Finally, I had found where it broke. I felt like Darth Vader in the original Star Wars:

darth-vader-i-have-you-now_1
I have you now!

The first draft of my paper with Joe included a resounding renunciation of MOND. No way could it escape this!

But…

I had this nagging feeling I was missing something. Darth should have looked over his shoulder. Should I?

Surely I had missed nothing. Many people are unaware of the EFE, just as we had been unaware that Fornax contained young stars. But not me! I knew all that. Surely this was it.

Nevertheless, the nagging feeling persisted. One part of it was sociological: if I said MOND was dead, it would be well and truly buried. But did it deserve to be? The scientific part of the nagging feeling was that maybe there had been some paper that addressed this, maybe a decade before… perhaps I’d better double check.

Indeed, Brada & Milgrom (2000) had run numerical simulations of dwarf satellites orbiting around giant hosts. MOND is a nonlinear dynamical theory; not everything can be approximated analytically. When a dwarf satellite is close to its giant host, the external acceleration of the dwarf falling towards its host can exceed the internal acceleration of the stars in the dwarf orbiting each other – hence the EFE. But the EFE is not a static thing; it varies as the dwarf orbits about, becoming stronger on closer approach. At some point, this variation becomes to fast for the dwarf to remain in equilibrium. This is important, because the assumption of dynamical equilibrium underpins all these arguments. Without it, it is hard to know what to expect short of numerically simulating each individual dwarf. There is no reason to expect them to remain on the equilibrium BTFR.

Brada & Milgrom suggested a measure to gauge the extent to which a dwarf might be out of equilibrium. It boils down to a matter of timescales. If the stars inside the dwarf have time to adjust to the changing external field, a quasi-static EFE approximation might suffice. So the figure of merit becomes the ratio of internal orbits per external orbit. If the stars inside a dwarf are swarming around many times for every time it completes an orbit around the host, then they have time to adjust. If the orbit of the dwarf around the host is as quick as the internal motions of the stars within the dwarf, not so much. At some point, a satellite becomes a collection of associated stars orbiting the host rather than a self-bound object in its own right.

Fig7_annotated
Deviations from the BTFR (left) and the isophotal shape of dwarfs (right) as a function of the number of internal orbits a star at the half-light radius makes for every orbit a dwarf makes around its giant host (Fig. 7 of McGaugh & Wolf 2010).

Brada & Milgrom provide the formula to compute the ratio of orbits, shown in the figure above. The smaller the ratio, the less chance an object has to adjust, and the more subject it is to departures from equilibrium. Remarkably, the amplitude of deviation from the BTFR – the problem I could not understand initially – correlates with the ratio of orbits. The more susceptible a dwarf is to disequilibrium effects, the farther it deviated from the BTFR.

This completely inverted the MOND interpretation. Instead of falsifying MOND, the data now appeared to corroborate the non-equilibrium prediction of Brada & Milgrom. The stronger the external influence, the more a dwarf deviated from the equilibrium expectation. In conventional terms, it appeared that the ultrafaints were subject to tidal stirring: their internal velocities were being pumped up by external influences. Indeed, the originally problematic cases, Draco and Ursa Minor, fall among the ultrafaint dwarfs in these terms. They can’t be in equilibrium in MOND.

If the ultrafaints are out of equilibrium, the might show some independent evidence of this. Stars should leak out, distorting the shape of the dwarf and forming tidal streams. Can we see this?

A definite maybe:

Ell_D_wImages
The shapes of some ultrafaint dwarfs. These objects are so diffuse that they are invisible on the sky; their shape is illustrated by contours or heavily smoothed grayscale pseudo-images.

The dwarfs that are more subject to external influence tend to be more elliptical in shape. A pressure supported system in equilibrium need not be perfectly round, but one departing from equilibrium will tend to get stretched out. And indeed, many of the ultrafaints look Messed Up.

I am not convinced that all this requires MOND. But it certainly doesn’t falsify it. Tidal disruption can happen in the dark matter context, but it happens differently. The stars are buried deep inside protective cocoons of dark matter, and do not feel tidal effects much until most of the dark matter is stripped away. There is no reason to expect the MOND measure of external influence to apply (indeed, it should not), much less that it would correlate with indications of tidal disruption as seen above.

This seems to have been missed by more recent papers on the subject. Indeed, Fattahi et al. (2018) have reconstructed very much the chain of thought I describe above. The last sentence of their abstract states “In many cases, the resulting velocity dispersions are inconsistent with the predictions from Modified Newtonian Dynamics, a result that poses a possibly insurmountable challenge to that scenario.” This is exactly what I thought. (I have you now.) I was wrong.

Fattahi et al. are wrong for the same reasons I was wrong. They are applying equilibrium reasoning to a non-equilibrium situation. Ironically, the main point of the their paper is that many systems can’t be explained with dark matter, unless they are tidally stripped – i.e., the result of a non-equilibrium process. Oh, come on. If you invoke it in one dynamical theory, you might want to consider it in the other.

To quote the last sentence of our abstract from 2010, “We identify a test to distinguish between the ΛCDM and MOND based on the orbits of the dwarf satellites of the Milky Way and how stars are lost from them.” In ΛCDM, the sub-halos that contain dwarf satellites are expected to be on very eccentric orbits, with all the damage from tidal interactions with the host accruing during pericenter passage. In MOND, substantial damage may accrue along lower eccentricity orbits, leading to the expectation of more continuous disruption.

Gaia is measuring proper motions for stars all over the sky. Some of these stars are in the dwarf satellites. This has made it possible to estimate orbits for the dwarfs, e.g., work by Amina Helmi (et al!) and Josh Simon. So far, the results are definitely mixed. There are more dwarfs on low eccentricity orbits than I had expected in ΛCDM, but there are still plenty that are on high eccentricity orbits, especially among the ultrafaints. Which dwarfs have been tidally affected by interactions with their hosts is far from clear.

In short, reality is messy. It is going to take a long time to sort these matters out. These are early days.

Astronomical Acceleration Scales

Astronomical Acceleration Scales

A quick note to put the acceleration discrepancy in perspective.

The acceleration discrepancy, as Bekenstein called it, more commonly called the missing mass or dark matter problem, is the deviation of dynamics from those of Newton and Einstein. The quantity D is the amplitude of the discrepancy, basically the ratio of total mass to that which is visible. The need for dark matter – the discrepancy – only manifests at very low accelerations, of order 10-10 m/s/s. That’s one part in 1011 of what you feel standing on the Earth.

MDacc_wclusters_uptomergingBH
The mass discrepancy as a function of acceleration. There is no discrepancy (D=1) at high acceleration: everything is normal in the solar system and at the highest accelerations probed. The discrepancy only manifests at very low accelerations.

Astronomical data span enormous, indeed, astronomical, ranges. This is why astronomers so frequently use logarithmic plots. The abscissa in the plot above spans 25 orders of magnitude, from the lowest accelerations measured in the outskirts of galaxies to the highest conceivable on the surface of a neutron star on the brink of collapse into a black hole. If we put this on a linear scale, you’d see one point (the highest) and all the rest would be crammed into x=0.

Galileo established that the we live in a regime where the acceleration due to gravity is effectively constant; g = 9.8 m/s/s. This suffices to describe the trajectories of projectiles (like baseballs) familiar to everyday experience. At least is suffices to describe the gravity; air resistance plays a non-negligible role as well. But you don’t need Newton’s Universal Law of Gravity; you just need to know everything experiences a downward acceleration of one gee.

As we move to higher altitude and on into space, this ceases to suffice. As Newton taught us, the strength of the gravitational attraction between two bodies decreases as the distance between them increases. The constant acceleration recognized by Galileo was a special case of a more general phenomenon. The surface of the Earth is a [very nearly] constant distance from its center, so gee is [very nearly] constant. Get off the Earth, and that changes.

In the plot above, the acceleration we experience here on the surface of the Earth lands pretty much in the middle of the range known to astronomical observation. This is normal to us. The orbits of the planets in the solar system stretch to lower accelerations: the surface gravity of the Earth exceeds the centripetal force it takes to keep Earth in its orbit around the sun. This decreases outward in the solar system, with Neptune experiencing less than 10-5 m/s/s in its orbit.

We understand the gravity in the solar system extraordinarily well. We’ve been watching the planets orbit for ages. The inner planets, in particular, are so well known that subtle effects have been known for ages. Most famous is the tiny excess precession of the perihelion of the orbit of Mercury, first noted by Le Verrier in 1859 but not satisfactorily* explained until Einstein applied General Relativity to the problem in 1916.

The solar system probes many decades of acceleration accurately, but there are many decades of phenomena beyond the reach of the solar system, both to higher and lower accelerations. Two objects orbiting one another intensely enough for the energy loss due to the emission of gravitational waves to have a measurable effect on their orbit are the two neutron stars that compose the binary pulsar of Hulse & Taylor. Their orbit is highly eccentric, pulling an acceleration of about 270 m/s/s at periastron (closest passage). The gravitational dynamics of the system are extraordinarily well understood, and Hulse & Taylor were awarded the 1993 Nobel prize in physics for this observation that indirectly corroborated the existence of gravitational waves.

ghostbusters-20090702101358857
The mass-energy tensor was dancing a monster jig as the fabric of space-time was rent asunder, I can tell you!

Direct detection of gravitational waves was first achieved by LIGO in 2015 (the 2017 Nobel prize). The source of these waves was the merger of a binary pair of black holes, a calamity so intense that it converted the equivalent of 3 solar masses into the energy carried away as gravitational waves. Imagine two 30 solar mass black holes orbiting each other a few hundred km apart 75 times per second just before merging – that equates to a centripetal acceleration of nearly 1011 m/s/s.

We seem to understand gravity well in this regime.

The highest acceleration illustrated in the figure above is the maximum surface gravity of a neutron star, which is just a hair under 1013 m/s/s. Anything more than this collapses to a black hole. The surface of a neutron star is not a place that suffers large mountains to exist, even if by “large” you mean “ant sized.” Good luck walking around in an exoskeleton there! Micron scale crustal adjustments correspond to monster starquakes.

High-end gravitational accelerations are 20 orders of magnitude removed from where the acceleration discrepancy appears. Dark matter is a problem restricted to the regime of tiny accelerations, of order 1 Angstrom/s/s. That isn’t much, but it is roughly what holds a star in its orbit within a galaxy. Sometimes less.

Galaxies show a large and clear acceleration discrepancy. The mob of black points is the radial acceleration relation, compressed to fit on the same graph with the high acceleration phenomena. Whatever happens, happens suddenly at this specific scale.

I also show clusters of galaxies, which follow a similar but offset acceleration relation. The discrepancy sets in a littler earlier for them (and with more scatter, but that may simply be a matter of lower precision). This offset from galaxies is a small matter on the scale considered here, but it is a serious one if we seek to modify dynamics at a universal acceleration scale. Depending on how one chooses to look at this aspect of the problem, the data for clusters are either tantalizingly close to the [far superior] data for galaxies, or they are impossibly far removed. Regardless of which attitude proves to be less incorrect, it is clear that the missing mass phenomena is restricted to low accelerations. Everything is normal until we reach the lowest decade or two of accelerations probed by current astronomical data – and extragalactic data are the only data that test gravity in this regime.

We have no other data that probe the very low acceleration regime. The lowest acceleration probe we have with solar system accuracy is from the Pioneer spacecraft. These suffer an anomalous acceleration whose source was debated for many years. Was it some subtle asymmetry in the photon pressure due thermal radiation from the spacecraft? Or new physics?

Though the effect is tiny (it is shown in the graph above, but can you see it?), it would be enormous for a MOND effect. MOND asymptotes to Newton at high accelerations. Despite the many AU Pioneer has put between itself and home, it is still in a regime 4 orders of magnitude above where MOND effects kick in. This would only be perceptible if the asymptotic approach to the Newtonian regime were incredibly slow. So slow, in fact, that it should be perceptible in the highly accurate data for the inner planets. Nowadays, the hypothesis of asymmetric photon pressure is widely accepted, which just goes to show how hard it is to construct experiments to test MOND. Not only do you have to get far enough away from the sun to probe the MOND regime (about a tenth of a light-year), but you have to control for how hard itty-bitty photons push on your projectile.

That said, it’d still be great experiment. Send a bunch of test particles out of the solar system at high speed on a variety of ballistic trajectories. They needn’t be much more than bullets with beacons to track them by. It would take a heck of a rocket to get them going fast enough to return an answer within a lifetime, but rocket scientists love a challenge to go real fast.


*Le Verrier suggested that the effect could be due to a new planet, dubbed Vulcan, that orbited the sun interior to the orbit of Mercury. In the half century prior to Einstein settling the issue, there were many claims to detect this Victorian form of dark matter.

Dwarf Satellite Galaxies and Low Surface Brightness Galaxies in the Field. I.

Dwarf Satellite Galaxies and Low Surface Brightness Galaxies in the Field. I.

The Milky Way and its nearest giant neighbor Andromeda (M31) are surrounded by a swarm of dwarf satellite galaxies. Aside from relatively large beasties like the Large Magellanic Cloud or M32, the majority of these are the so-called dwarf spheroidals. There are several dozen examples known around each giant host, like the Fornax dwarf pictured above.

Dwarf Spheroidal (dSph) galaxies are ellipsoidal blobs devoid of gas that typically contain a million stars, give or take an order of magnitude. Unlike globular clusters, that may have a similar star count, dSphs are diffuse, with characteristic sizes of hundreds of parsecs (vs. a few pc for globulars). This makes them among the lowest surface brightness systems known.

This subject has a long history, and has become a major industry in recent years. In addition to the “classical” dwarfs that have been known for decades, there have also been many comparatively recent discoveries, often of what have come to be called “ultrafaint” dwarfs. These are basically dSphs with luminosities less than 100,000 suns, sometimes being comprised of as little as a few hundred stars. New discoveries are being made still, and there is reason to hope that the LSST will discover many more. Summed up, the known dwarf satellites are proverbial drops in the bucket compared to their giant hosts, which contain hundreds of billions of stars. Dwarfs could rain in for a Hubble time and not perturb the mass budget of the Milky Way.

Nevertheless, tiny dwarf Spheroidals are excellent tests of theories like CDM and MOND. Going back to the beginning, in the early ’80s, Milgrom was already engaged in a discussion about the predictions of his then-new theory (before it was even published) with colleagues at the IAS, where he had developed the idea during a sabbatical visit. They were understandably skeptical, preferring – as many still do – to believe that some unseen mass was the more conservative hypothesis. Dwarf spheroidals came up even then, as their very low surface brightness meant low acceleration in MOND. This in turn meant large mass discrepancies. If you could measure their dynamics, they would have large mass-to-light ratios. Larger than could be explained by stars conventionally, and larger than the discrepancies already observed in bright galaxies like Andromeda.

This prediction of Milgrom’s – there from the very beginning – is important because of how things change (or don’t). At that time, Scott Tremaine summed up the contrasting expectation of the conventional dark matter picture:

“There is no reason to expect that dwarfs will have more dark matter than bright galaxies.” *

This was certainly the picture I had in my head when I first became interested in low surface brightness (LSB) galaxies in the mid-80s. At that time I was ignorant of MOND; my interest was piqued by the argument of Disney that there could be a lot of as-yet undiscovered LSB galaxies out there, combined with my first observing experiences with the then-newfangled CCD cameras which seemed to have a proclivity for making clear otherwise hard-to-see LSB features. At the time, I was interested in finding LSB galaxies. My interest in what made them rotate came  later.

The first indication, to my knowledge, that dSph galaxies might have large mass discrepancies was provided by Marc Aaronson in 1983. This tentative discovery was hugely important, but the velocity dispersion of Draco (one of the “classical” dwarfs) was based on only 3 stars, so was hardly definitive. Nevertheless, by the end of the ’90s, it was clear that large mass discrepancies were a defining characteristic of dSphs. Their conventionally computed M/L went up systematically as their luminosity declined. This was not what we had expected in the dark matter picture, but was, at least qualitatively, in agreement with MOND.

My own interests had focused more on LSB galaxies in the field than on dwarf satellites like Draco. Greg Bothun and Jim Schombert had identified enough of these to construct a long list of LSB galaxies that served as targets my for Ph.D. thesis. Unlike the pressure-supported ellipsoidal blobs of stars that are the dSphs, the field LSBs we studied were gas rich, rotationally supported disks – mostly late type galaxies (Sd, Sm, & Irregulars). Regardless of composition, gas or stars, low surface density means that MOND predicts low acceleration. This need not be true conventionally, as the dark matter can do whatever the heck it wants. Though I was blissfully unaware of it at the time, we had constructed the perfect sample for testing MOND.

Having studied the properties of our sample of LSB galaxies, I developed strong ideas about their formation and evolution. Everything we had learned – their blue colors, large gas fractions, and low star formation rates – suggested that they evolved slowly compared to higher surface brightness galaxies. Star formation gradually sputtered along, having a hard time gathering enough material to make stars in their low density interstellar media. Perhaps they even formed late, an idea I took a shining to in the early ’90s. This made two predictions: field LSB galaxies should be less strongly clustered than bright galaxies, and should spin slower at a given mass.

The first prediction follows because the collapse time of dark matter halos correlates with their larger scale environment. Dense things collapse first and tend to live in dense environments. If LSBs were low surface density because they collapsed late, it followed that they should live in less dense environments.

I didn’t know how to test this prediction. Fortunately, fellow postdoc and office mate in Cambridge at the time, Houjun Mo, did. It came true. The LSB galaxies I had been studying were clustered like other galaxies, but not as strongly. This was exactly what I expected, and I thought sure we were on to something. All that remained was to confirm the second prediction.

At the time, we did not have a clear idea of what dark matter halos should be like. NFW halos were still in the future. So it seemed reasonable that late forming halos should have lower densities (lower concentrations in the modern terminology). More importantly, the sum of dark and luminous density was certainly less. Dynamics follow from the distribution of mass as Velocity2 ∝ Mass/Radius. For a given mass, low surface brightness galaxies had a larger radius, by construction. Even if the dark matter didn’t play along, the reduction in the concentration of the luminous mass should lower the rotation velocity.

Indeed, the standard explanation of the Tully-Fisher relation was just this. Aaronson, Huchra, & Mould had argued that galaxies obeyed the Tully-Fisher relation because they all had essentially the same surface brightness (Freeman’s law) thereby taking variation in the radius out of the equation: galaxies of the same mass all had the same radius. (If you are a young astronomer who has never heard of Freeman’s law, you’re welcome.) With our LSB galaxies, we had a sample that, by definition, violated Freeman’s law. They had large radii for a given mass. Consequently, they should have lower rotation velocities.

Up to that point, I had not taken much interest in rotation curves. In contrast, colleagues at the University of Groningen were all about rotation curves. Working with Thijs van der Hulst, Erwin de Blok, and Martin Zwaan, we set out to quantify where LSB galaxies fell in relation to the Tully-Fisher relation. I confidently predicted that they would shift off of it – an expectation shared by many at the time. They did not.

BTFSBallwlinessmall
The Tully-Fisher relation: disk mass vs. flat rotation speed (circa 1996). Galaxies are binned by surface brightness with the highest surface brightness galaxies marked red and the lowest blue. The lines show the expected shift following the argument of Aaronson et al. Contrary to this expectation, galaxies of all surface brightnesses follow the same Tully-Fisher relation.

I was flummoxed. My prediction was wrong. That of Aaronson et al. was wrong. Poking about the literature, everyone who had made a clear prediction in the conventional context was wrong. It made no sense.

I spent months banging my head against the wall. One quick and easy solution was to blame the dark matter. Maybe the rotation velocity was set entirely by the dark matter, and the distribution of luminous mass didn’t come into it. Surely that’s what the flat rotation velocity was telling us? All about the dark matter halo?

Problem is, we measure the velocity where the luminous mass still matters. In galaxies like the Milky Way, it matters quite a lot. It does not work to imagine that the flat rotation velocity is set by some property of the dark matter halo alone. What matters to what we measure is the combination of luminous and dark mass. The luminous mass is important in high surface brightness galaxies, and progressively less so in lower surface brightness galaxies. That should leave some kind of mark on the Tully-Fisher relation, but it doesn’t.

CRVfresid
Residuals from the Tully-Fisher relation as a function of size at a given mass. Compact galaxies are to the left, diffuse ones to the right. The red dashed line is what Newton predicts: more compact galaxies should rotate faster at a given mass. Fundamental physics? Tully-Fisher don’t care. Tully-Fisher don’t give a sh*t.

I worked long and hard to understand this in terms of dark matter. Every time I thought I had found the solution, I realized that it was a tautology. Somewhere along the line, I had made an assumption that guaranteed that I got the answer I wanted. It was a hopeless fine-tuning problem. The only way to satisfy the data was to have the dark matter contribution scale up as that of the luminous mass scaled down. The more stretched out the light, the more compact the dark – in exact balance to maintain zero shift in Tully-Fisher.

This made no sense at all. Over twenty years on, I have yet to hear a satisfactory conventional explanation. Most workers seem to assert, in effect, that “dark matter does it” and move along. Perhaps they are wise to do so.

repomanfoxharris
Working on the thing can drive you mad.

As I was struggling with this issue, I happened to hear a talk by Milgrom. I almost didn’t go. “Modified gravity” was in the title, and I remember thinking, “why waste my time listening to that nonsense?” Nevertheless, against my better judgement, I went. Not knowing that anyone in the audience worked on either LSB galaxies or Tully-Fisher, Milgrom proceeded to derive the MOND prediction:

“The asymptotic circular velocity is determined only by the total mass of the galaxy: Vf4 = a0GM.”

In a few lines, he derived rather trivially what I had been struggling to understand for months. The lack of surface brightness dependence in Tully-Fisher was entirely natural in MOND. It falls right out of the modified force law, and had been explicitly predicted over a decade before I struggled with the problem.

I scraped my jaw off the floor, determined to examine this crazy theory more closely. By the time I got back to my office, cognitive dissonance had already started to set it. Couldn’t be true. I had more pressing projects to complete, so I didn’t think about it again for many moons.

When I did, I decided I should start by reading the original MOND papers. I was delighted to find a long list of predictions, many of them specifically to do with surface brightness. We had just collected fresh data on LSB galaxies, which provided a new window on the low acceleration regime. I had the data to finally falsify this stupid theory.

Or so I thought. As I went through the list of predictions, my assumption that MOND had to be wrong was challenged by each item. It was barely an afternoon’s work: check, check, check. Everything I had struggled for months to understand in terms of dark matter tumbled straight out of MOND.

I was faced with a choice. I knew this would be an unpopular result. I could walk away and simply pretend I had never run across it. That’s certainly how it had been up until then: I had been blissfully unaware of MOND and its perniciously successful predictions. No need to admit otherwise.

Had I realized just how unpopular it would prove to be, maybe that would have been the wiser course. But even contemplating such a course felt criminal. I was put in mind of Paul Gerhardt’s admonition for intellectual honesty:

“When a man lies, he murders some part of the world.”

Ignoring what I had learned seemed tantamount to just that. So many predictions coming true couldn’t be an accident. There was a deep clue here; ignoring it wasn’t going to bring us closer to the truth. Actively denying it would be an act of wanton vandalism against the scientific method.

Still, I tried. I looked long and hard for reasons not to report what I had found. Surely there must be some reason this could not be so?

Indeed, the literature provided many papers that claimed to falsify MOND. To my shock, few withstood critical examination. Commonly a straw man representing MOND was falsified, not MOND itself. At a deeper level, it was implicitly assumed that any problem for MOND was an automatic victory for dark matter. This did not obviously follow, so I started re-doing the analyses for both dark matter and MOND. More often than not, I found either that the problems for MOND were greatly exaggerated, or that the genuinely problematic cases were a problem for both theories. Dark matter has more flexibility to explain outliers, but outliers happen in astronomy. All too often the temptation was to refuse to see the forest for a few trees.

The first MOND analysis of the classical dwarf spheroidals provides a good example. Completed only a few years before I encountered the problem, these were low surface brightness systems that were deep in the MOND regime. These were gas poor, pressure supported dSph galaxies, unlike my gas rich, rotating LSB galaxies, but the critical feature was low surface brightness. This was the most directly comparable result. Better yet, the study had been made by two brilliant scientists (Ortwin Gerhard & David Spergel) whom I admire enormously. Surely this work would explain how my result was a mere curiosity.

Indeed, reading their abstract, it was clear that MOND did not work for the dwarf spheroidals. Whew: LSB systems where it doesn’t work. All I had to do was figure out why, so I read the paper.

As I read beyond the abstract, the answer became less and less clear. The results were all over the map. Two dwarfs (Sculptor and Carina) seemed unobjectionable in MOND. Two dwarfs (Draco and Ursa Minor) had mass-to-light ratios that were too high for stars, even in MOND. That is, there still appeared to be a need for dark matter even after MOND had been applied. One the flip side, Fornax had a mass-to-light ratio that was too low for the old stellar populations assumed to dominate dwarf spheroidals. Results all over the map are par for the course in astronomy, especially for a pioneering attempt like this. What were the uncertainties?

Milgrom wrote a rebuttal. By then, there were measured velocity dispersions for two more dwarfs. Of these seven dwarfs, he found that

“within just the quoted errors on the velocity dispersions and the luminosities, the MOND M/L values for all seven dwarfs are perfectly consistent with stellar values, with no need for dark matter.”

Well, he would say that, wouldn’t he? I determined to repeat the analysis and error propagation.

MdB98bFig8_dSph
Mass-to-light ratios determined with MOND for eight dwarf spheroidals (named, as published in McGaugh & de Blok 1998). The various symbols refer to different determinations. Mine are the solid circles. The dashed lines show the plausible range for stellar populations.

The net result: they were both right. M/L was still too high for Draco and Ursa Minor, and still too low for Fornax. But this was only significant at the 2σ level, if that – hardly enough to condemn a theory. Carina, Leo I, Leo II, Sculptor, and Sextans all had fairly reasonable mass-to-light ratios. The voting is different now. Instead of going 2 for 5 as Gerhard & Spergel found, MOND was now 5 for 8. One could choose to obsess about the outliers, or one could choose to see a more positive pattern.  Either a positive or a negative spin could be put on this result. But it was clearly more positive than the first attempt had indicated.

The mass estimator in MOND scales as the fourth power of velocity (or velocity dispersion in the case of isolated dSphs), so the too-high M*/L of Draco and Ursa Minor didn’t disturb me too much. A small overestimation of the velocity dispersion would lead to a large overestimation of the mass-to-light ratio. Just about every systematic uncertainty one can think of pushes in this direction, so it would be surprising if such an overestimate didn’t happen once in a while.

Given this, I was more concerned about the low M*/L of Fornax. That was weird.

Up until that point (1998), we had been assuming that the stars in dSphs were all old, like those in globular clusters. That corresponds to a high M*/L, maybe 3 in solar units in the V-band. Shortly after this time, people started to look closely at the stars in the classical dwarfs with the Hubble. Low and behold, the stars in Fornax were surprisingly young. That means a low M*/L, 1 or less. In retrospect, MOND was trying to tell us that: it returned a low M*/L for Fornax because the stars there are young. So what was taken to be a failing of the theory was actually a predictive success.

Hmm.

And Gee. This is a long post. There is a lot more to tell, but enough for now.


*I have a long memory, but it is not perfect. I doubt I have the exact wording right, but this does accurately capture the sentiment from the early ’80s when I was an undergraduate at MIT and Scott Tremaine was on the faculty there.

A Precise Milky Way

A Precise Milky Way

The Milky Way Galaxy in which we live seems to be a normal spiral galaxy. But it can be hard to tell. Our perspective from within it precludes a “face-on” view like the picture above, which combines some real data with a lot of artistic liberty. Some local details we can measure in extraordinary detail, but the big picture is hard. Just how big is the Milky Way? The absolute scale of our Galaxy has always been challenging to measure accurately from our spot within it.

For some time, we have had a remarkably accurate measurement of the angular speed of the sun around the center of the Galaxy provided by the proper motion of Sagittarius A*. Sgr A* is the radio source associated with the supermassive black hole at the center of the Galaxy. By watching how it appears to move across the sky, Reid & Brunthaler found our relative angular speed to be 6.379 milliarcseconds/year. That’s a pretty amazing measurement: a milliarcsecond is one one-thousandth of one arcsecond, which is one sixtieth of one arcminute, which is one sixtieth of a degree. A pretty small angle.

The proper motion of an object depends on the ratio of its speed to its distance. So this high precision measurement does not itself tell us how big the Milky Way is. We could be far from the center and moving fast, or close and moving slow. Close being a relative term when our best estimates of the distance to the Galactic center hover around 8 kpc (26,000 light-years), give or take half a kpc.

This situation has recently improved dramatically thanks to the Gravity collaboration. They have observed the close passage of a star (S2) past the central supermassive black hole Sgr A*. Their chief interest is in the resulting relativistic effects: gravitational redshift and Schwarzschild precession, which provide a test of General Relativity. Unsurprisingly, it passes with flying colors.

As a consequence of their fitting process, we get for free some other interesting numbers. The mass of the central black hole is 4.1 million solar masses, and the distance to it is 8.122 kpc. The quoted uncertainty is only 31 pc. That’s parsecs, not kiloparsecs. Previously, I had seen credible claims that the distance to the Galactic center was 7.5 kpc. Or 7.9. Or 8.3 Or 8.5. There was a time when it was commonly thought to be about 10 kpc, i.e., we weren’t even sure what column the first digit belonged in. Now we know it to several decimal places. Amazing.

Knowing both the Galactocentric distance and the proper motion of Sgr A* nails down the relative speed of the sun: 245.6 km/s. Of this, 12.2 km/s is “solar motion,” which is how much the sun deviates from a circular orbit. Correcting for this gives us the circular speed of an imaginary test particle orbiting at the sun’s location: 233.3 km/s, accurate to 1.4 km/s.

The distance and circular speed at the solar circle are the long sought Galactic Constants. These specify the scale of the Milky Way. Knowing them also pins down the rotation curve interior to the sun. This is well constrained by the “terminal velocities,” which provide a precise mapping of relative speeds, but need the Galactic Constants for an absolute scale.

A few years ago, I built a model Milky Way rotation curve that fit the terminal velocity data. What I was interested in then was to see if I could use the radial acceleration relation (RAR) to infer the mass distribution of the Galactic disk. The answer was yes. Indeed, it makes for a clear improvement over the traditional approach of assuming a purely exponential disk in the sense that the kinematically inferred bumps and wiggles in the rotation curve correspond to spiral arms known from star counts, as in external spiral galaxies.

Now that the Galactic constants are Known, it seems worth updating the model. This results in the surface density profile

SurfaceDensityProfile
The surface density profile of the Milky Way model scaled to the newly accurate distance to the Galactic center.

with the corresponding rotation curve

MW_2018_VR
The rotation curve of the Milky Way as traced by terminal velocities in the first and fourth quadrants (red and blue points). The solid line is a model that matches this rotation curve. The dashed and dotted lines are the rotation curves of the baryonic and inferred dark matter components. Yellow bands show the effect of varying the stellar mass by 5%.

The model data are available from the Milky Way section of my model pages.

Finding a model that matches both the terminal velocity and the highly accurate Galactic constants is no small feat. Indeed, I worried it was impossible: the speed at the solar circle is down to 233 km/s from a high of 249 km/s just a couple of kpc interior. This sort of variation is possible, but it requires a ring of mass outside the sun. This appears to be the effect of the Perseus spiral arm.

For the new Galactic constants and the current calibration of the RAR, the stellar mass of the Milky Way works out to just under 62 billion solar masses. The largest uncertainty in this is from the asymmetry in the terminal velocities, which are slightly different in the first and fourth quadrants. This is likely a real asymmetry in the mass distribution of the Milky Way. Treating it as an uncertainty, the range of variation corresponds to about 5% up or down in stellar mass.

With the stellar mass determined in this way, we can estimate the local density of dark matter. This is the critical number that is needed for experimental searches: just how much of the stuff should we expect? The answer is very precise: 0.257 GeV per cubic cm. This a bit less than is usually assumed, which makes it a tiny bit harder on the hard-working experimentalists.

The accuracy of the dark matter density is harder to assess. The biggest uncertainty is that in stellar mass. We known the total radial force very well now, but how much is due to stars, and how much to dark matter? (or whatever). The RAR provides a unique method for constraining the stellar contribution, and does so well enough that there is very little formal uncertainty in the dark matter density. This, however, depends on the calibration of the RAR, which itself is subject to systematic uncertainty at the 20% level. This is not as bad as it sounds, because a recalibration of the RAR changes its shape in a way that tends to trade off with stellar mass while not much changing the implied dark matter density. So even with these caveats, this is the most accurate measure of the dark matter density to date.

This is all about the radial force. One can also measure the force perpendicular to the disk. This vertical force implies about twice the dark matter density. This may be telling us something about the shape of the dark matter halo – rather than being spherical as usually assumed, it might be somewhat squashed. It is easy to say that, but it seems a strange circumstance: the stars provide most of the restoring force in the vertical direction, and apparently dominate the radial force. Subtracting off the stellar contribution is thus a challenging task: the total force isn’t much greater than that from the stars alone. Subtracting one big number from another to measure a small one is fraught with peril: the uncertainties tend to blow up in your face.

Returning to the Milky Way, it seems in all respects to be a normal spiral galaxy. With the stellar mass found here, we can compare it to other galaxies in scaling relations like Tully-Fisher. It does not stand out from the crowd: our home is a fairly normal place for this time in the Universe.

TFMW
The stellar mass Tully-Fisher relation with the Milky Way shown as the red star. It is a typical spiral galaxy.

It is possible to address many more details with a model like this. See the original!

 

 

A brief history of the acceleration discrepancy

A brief history of the acceleration discrepancy

As soon as I wrote it, I realized that the title is much more general than anything that can be fit in a blog post. Bekenstein argued long ago that the missing mass problem should instead be called the acceleration discrepancy, because that’s what it is – a discrepancy that occurs in conventional dynamics at a particular acceleration scale. So in that sense, it is the entire history of dark matter. For that, I recommend the excellent book The Dark Matter Problem: A Historical Perspective by Bob Sanders.

Here I mean more specifically my own attempts to empirically constrain the relation between the mass discrepancy and acceleration. Milgrom introduced MOND in 1983, no doubt after a long period of development and refereeing. He anticipated essentially all of what I’m going to describe. But not everyone is eager to accept MOND as a new fundamental theory, and often suffer from a very human tendency to confuse fact and theory. So I have gone out of my way to demonstrate what is empirically true in the data – facts – irrespective of theoretical interpretation (MOND or otherwise).

What is empirically true, and now observationally established beyond a reasonable doubt, is that the mass discrepancy in rotating galaxies correlates with centripetal acceleration. The lower the acceleration, the more dark matter one appears to need. Or, as Bekenstein might have put it, the amplitude of the acceleration discrepancy grows as the acceleration itself declines.

Bob Sanders made the first empirical demonstration that I am aware of that the mass discrepancy correlates with acceleration. In a wide ranging and still relevant 1990 review, he showed that the amplitude of the mass discrepancy correlated with the acceleration at the last measured point of a rotation curve. It did not correlate with radius.

AccDisc_Sanders1990
The acceleration discrepancy from Sanders (1990).

I was completely unaware of this when I became interested in the problem a few years later. I wound up reinventing the very same term – the mass discrepancy, which I defined as the ratio of dynamically measured mass to that visible in baryons: D = Mtot/Mbar. When there is no dark matter, Mtot = Mbar and D = 1.

My first demonstration of this effect was presented at a conference at Rutgers in 1998. This considered the mass discrepancy at every radius and every acceleration within all the galaxies that were available to me at that time. Though messy, as is often the case in extragalactic astronomy, the correlation was clear. Indeed, this was part of a broader review of galaxy formation; the title, abstract, and much of the substance remains relevant today.

MD1998_constantML
The mass discrepancy – the ratio of dynamically measured mass to that visible in luminous stars and gas – as a function of centripetal acceleration. Each point is a measurement along a rotation curve; two dozen galaxies are plotted together. A constant mass-to-light ratio is assumed for all galaxies.

I spent much of the following five years collecting more data, refining the analysis, and sweating the details of uncertainties and systematic instrumental effects. In 2004, I published an extended and improved version, now with over 5 dozen galaxies.

MDaccpoponly
One panel from Fig. 5 of McGaugh (2004). The mass discrepancy is plotted against the acceleration predicted by the baryons (in units of km2 s2 kpc-1).

Here I’ve used a population synthesis model to estimate the mass-to-light ratio of the stars. This is the only unknown; everything else is measured. Note that the vast majority galaxies land on top of each other. There are a few that do not, as you can perceive in the parallel sets of points offset from the main body. But that happens in only a few cases, as expected – no population model is perfect. Indeed, this one was surprisingly good, as the vast majority of the individual galaxies are indistinguishable in the pile that defines the main relation.

I explored the how the estimation of the stellar mass-to-light ratio affected this mass discrepancy-acceleration relation in great detail in the 2004 paper. The details differ with the choice of estimator, but the bottom line was that the relation persisted for any plausible choice. The relation exists. It is an empirical fact.

At this juncture, further improvement was no longer limited by rotation curve data, which is what we had been working to expand through the early ’00s. Now it was the stellar mass. The measurement of stellar mass was based on optical measurements of the luminosity distribution of stars in galaxies. These are perfectly fine data, but it is hard to map the starlight that we measured to the stellar mass that we need for this relation. The population synthesis models were good, but they weren’t good enough to avoid the occasional outlier, as can be seen in the figure above.

One thing the models all agreed on (before they didn’t, then they did again) was that the near-infrared would provide a more robust way of mapping stellar mass than the optical bands we had been using up till then. This was the clear way forward, and perhaps the only hope for improving the data further. Fortunately, technology was keeping pace. Around this time, I became involved in helping the effort to develop the NEWFIRM near-infrared camera for the national observatories, and NASA had just launched the Spitzer space telescope. These were the right tools in the right place at the right time. Ultimately, the high accuracy of the deep images obtained from the dark of space by Spitzer at 3.6 microns were to prove most valuable.

Jim Schombert and I spent much of the following decade observing in the near-infrared. Many other observers were doing this as well, filling the Spitzer archive with useful data while we concentrated on our own list of low surface brightness galaxies. This paragraph cannot suffice to convey the long term effort and enormity of this program. But by the mid-teens, we had accumulated data for hundreds of galaxies, including all those for which we also had rotation curves and HI observations. The latter had been obtained over the course of decades by an entire independent community of radio observers, and represent an integrated effort that dwarfs our own.

On top of the observational effort, Jim had been busy building updated stellar population models. We have a sophisticated understanding of how stars work, but things can get complicated when you put billions of them together. Nevertheless, Jim’s work – and that of a number of independent workers – indicated that the relation between Spitzer’s 3.6 micron luminosity measurements and stellar mass should be remarkably simple – basically just a constant conversion factor for nearly all star forming galaxies like those in our sample.

Things came together when Federico Lelli joined Case Western as a postdoc in 2014. He had completed his Ph.D. in the rich tradition of radio astronomy, and was the perfect person to move the project forward. After a couple more years of effort, curating the rotation curve data and building mass models from the Spitzer data, we were in the position to build the relation for over a dozen dozen galaxies. With all the hard work done, making the plot was a matter of running a pre-prepared computer script.

Federico ran his script. The plot appeared on his screen. In a stunned voice, he called me into his office. We had expected an improvement with the Spitzer data – hence the decade of work – but we had also expected there to be a few outliers. There weren’t. Any.

All. the. galaxies. fell. right. on. top. of. each. other.

rar
The radial acceleration relation. The centripetal acceleration measured from rotation curves is plotted against that predicted by the observed baryons. 2693 points from 153 distinct galaxies are plotted together (bluescale); individual galaxies do not distinguish themselves in this plot. Indeed, the width of the scatter (inset) is entirely explicable by observational uncertainties and the expected scatter in stellar mass-to-light ratios. From McGaugh et al. (2016).

This plot differs from those above because we had decided to plot the measured acceleration against that predicted by the observed baryons so that the two axes would be independent. The discrepancy, defined as the ratio, depended on both. D is essentially the ratio of the y-axis to the x-axis of this last plot, dividing out the unity slope where D = 1.

This was one of the most satisfactory moments of my long career, in which I have been fortunate to have had many satisfactory moments. It is right up there with the eureka moment I had that finally broke the long-standing loggerhead about the role of selection effects in Freeman’s Law. (Young astronomers – never heard of Freeman’s Law? You’re welcome.) Or the epiphany that, gee, maybe what we’re calling dark matter could be a proxy for something deeper. It was also gratifying that it was quickly recognized as such, with many of the colleagues I first presented it to saying it was the highlight of the conference where it was first unveiled.

Regardless of the ultimate interpretation of the radial acceleration relation, it clearly exists in the data for rotating galaxies. The discrepancy appears at a characteristic acceleration scale, g = 1.2 x 10-10 m/s/s. That number is in the data. Why? is a deeply profound question.

It isn’t just that the acceleration scale is somehow fundamental. The amplitude of the discrepancy depends systematically on the acceleration. Above the critical scale, all is well: no need for dark matter. Below it, the amplitude of the discrepancy – the amount of dark matter we infer – increases systematically. The lower the acceleration, the more dark matter one infers.

The relation for rotating galaxies has no detectable scatter – it is a near-perfect relation. Whether this persists, and holds for other systems, is the interesting outstanding question. It appears, for example, that dwarf spheroidal galaxies may follow a slightly different relation. However, the emphasis here is on slighlty. Very few of these data pass the same quality criteria that the SPARC data plotted above do. It’s like comparing mud pies with diamonds.

Whether the scatter in the radial acceleration relation is zero or merely very tiny is important. That’s the difference between a new fundamental force law (like MOND) and a merely spectacular galaxy scaling relation. For this reason, it seems to be controversial. It shouldn’t be: I was surprised at how tight the relation was myself. But I don’t get to report that there is lots of scatter when there isn’t. To do so would be profoundly unscientific, regardless of the wants of the crowd.

Of course, science is hard. If you don’t do everything right, from the measurements to the mass models to the stellar populations, you’ll find some scatter where perhaps there isn’t any. There are so many creative ways to screw up that I’m sure people will continue to find them. Myself, I prefer to look forward: I see no need to continuously re-establish what has been repeatedly demonstrated in the history briefly outlined above.

The Acceleration Scale in the Data

The Acceleration Scale in the Data

One experience I’ve frequently had in Astronomy is that there is no result so obvious that someone won’t claim the exact opposite. Indeed, the more obvious the result, the louder the claim to contradict it.

This happened today with a new article in Nature Astronomy by Rodrigues, Marra, del Popolo, & Davari titled Absence of a fundamental acceleration scale in galaxies. This title is the opposite of true. Indeed, they make exactly the mistake in assigning priors that I warned about in the previous post.

There is a very obvious acceleration scale in galaxies. It can be seen in several ways. Here I describe a nice way that is completely independent of any statistics or model fitting: no need to argue over how to set priors.

Simple dimensional analysis shows that a galaxy with a flat rotation curve has a characteristic acceleration

g = 0.8 Vf4/(G Mb)

where Vf is the flat rotation speed, Mb is the baryonic mass, and G is Newton’s constant. The factor 0.8 arises from the disk geometry of rotating galaxies, which are not spherical cows. This is first year grad school material: see Binney & Tremaine. I include it here merely to place the characteristic acceleration g on the same scale as Milgrom’s acceleration constant a0.

These are all known numbers or measurable quantities. There are no free parameters: nothing to fiddle; nothing to fit. The only slightly tricky quantity is the baryonic mass, which is the sum of stars and gas. For the stars, we measure the light but need the mass, so we must adopt a mass-to-light ratio, M*/L. Here I adopt the simple model used to construct the radial acceleration relation: a constant 0.5 M/L at 3.6 microns for galaxy disks, and 0.7 M/L for bulges. This is the best present choice from stellar population models; the basic story does not change with plausible variations.

This is all it takes to compute the characteristic acceleration of galaxies. Here is the resulting histogram for SPARC galaxies:

ascale_hist
Characteristic accelerations for SPARC galaxies. The gray histogram includes all galaxies; the blue includes only higher quality data (quality flag 1 or 2 in SPARC and distance accuracy better than 20%). The range of the x-axis is chosen to match the range shown in Fig. 1 of Rodrigues et al.

Do you see the acceleration scale? It’s right there in the data.

I first employed this method in 2011, where I found <g> = 1.24 ± 0.14 Å s-2 for a sample of gas rich galaxies that predates and is largely independent of the SPARC data. This is consistent with the SPARC result <g> = 1.20 ± 0.02 Å s-2. This consistency provides some reassurance that the mass-to-light scale is near to correct since the gas rich galaxies are not sensitive to the choice of M*/L. Indeed, the value of Milgrom’s constant has not changed meaningfully since Begeman, Broeils, & Sanders (1991).

The width of the acceleration histogram is dominated by measurement uncertainties and scatter in M*/L. We have assumed that M*/L is constant here, but this cannot be exactly true. It is a good approximation in the near-infrared, but there must be some variation from galaxy to galaxy, as each galaxy has its own unique star formation history. Intrinsic scatter in M*/L due to population difference broadens the distribution. The intrinsic distribution of characteristic accelerations must be smaller.

I have computed the scatter budget many times. It always comes up the same: known uncertainties and scatter in M*/L gobble up the entire budget. There is very little room left for intrinsic variation in <g>. The upper limit is < 0.06 dex, an absurdly tiny number by the standards of extragalactic astronomy. The data are consistent with negligible intrinsic scatter, i.e., a universal acceleration scale. Apparently a fundamental acceleration scale is present in galaxies.

maxresdefault
Do you see the acceleration scale?